Transplanting larch trees into warmer areas increases the photosynthesis and its temperature sensitivity.

Tree Physiol

Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.

Published: December 2022

To investigate the effects of climate warming on photosynthesis, Dahurian larch (Larix gmelinii Rupr.) trees from four sites (spanning ~ 5.5° in latitude and ~4 °C of warming) within the geographic range in China were transplanted into a common garden close to the warmer border in 2004. Throughout the growing season of 2018, the CO2- and temperature-response curves of the photosynthesis in the common garden and at the original sites were measured. It was discovered that warming treatment considerably increased the maximum net photosynthetic rate (Amax) by 23.4-35.3% depending on the sites, signifying that warming upregulated Amax with respect to the degree of warming. At 25 °C, warming enhanced the maximum Rubisco carboxylation rate (Vcmax), maximum electron transport rate (Jmax), and mass-based leaf nitrogen concentration (Nmass). The climate warming effect (CWE) on Amax was positively associated with the CWEs on Vcmax, Jmax and Nmass, which indicated that warming promoted Amax primarily via increasing carboxylation and photosynthetic electron transport rates and leaf nitrogen supply. The CWE in optimal photosynthetic temperature (Topt) was significant for the trees from the northern sites rather than the southern sites; however, the effect vanished for the trees transplanted to the common garden; this implied that Topt exhibited limited local thermal acclimation. Nevertheless, warming narrowed the temperature-response curve, the effect of which was positively associated with the warming magnitude. These findings implied that trees transplanted into warmer areas changed the photosynthetic optimum temperature and sensitivity. In summary, our results deepen the understanding of the underlying mechanisms of intraspecific responses of photosynthesis to temperature changes, including which of the modeling would improve the prediction of tree growth and forest carbon cycling under climate warming.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpac084DOI Listing

Publication Analysis

Top Keywords

climate warming
12
common garden
12
warming
11
warmer areas
8
photosynthesis temperature
8
temperature sensitivity
8
°c warming
8
transplanted common
8
electron transport
8
leaf nitrogen
8

Similar Publications

Prokaryotic and eukaryotic periphyton responses to warming, nutrient enrichment and small omnivorous fish: a shallow lake mesocosms experiment.

Environ Res

January 2025

Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Global change stressors, including climate warming, eutrophication, and small-sized omnivorous fish, may exert interactive effects on the food webs and functioning of shallow lakes. Periphyton plays a central role in the primary production and nutrient cycling of shallow lakes but constitutes a complex community composed of eukaryotes and prokaryotes that may exhibit different responses to multiple environmental stressors with implications for the projections of the effects of global change on shallow lakes. We analyzed the effects of warming, nutrient enrichment, small omnivorous fish and their interactions on eukaryotic and prokaryotic periphyton structures in shallow lake mesocosms.

View Article and Find Full Text PDF

Thermodynamic regulation of carbon dioxide capture by functionalized ionic liquids.

Chem Soc Rev

January 2025

Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.

Carbon dioxide capture has attracted worldwide attention because CO emissions cause global warming and exacerbate climate change. Ionic liquids (ILs) have good application prospects in carbon capture due to their excellent properties, which provide a new chance to develop efficient and reversible carbon capture systems. This paper reviews the recent progress in CO chemical absorption by ILs, such as N-site, O-site, C-site, and multi-site functionalized ILs.

View Article and Find Full Text PDF

Heat stroke (HS) represents a life‑endangering condition that is due to an imbalance between heat generation and dissipation, owing to exposure to hot environments or strenuous exercise. HS is a medical condition that is gaining increased prevalence throughout the world due to a steady rise in temperature, and massive mortalities have been recorded among vulnerable populations. In 2024, extreme heat waves led to increased cases of HS and related fatalities globally, particularly in Karachi, Pakistan.

View Article and Find Full Text PDF

Plant responses to changes in temperature can be a key factor in predicting the presence and managing invasive plant species while conserving resident native plant species in dryland ecosystems. Climate can influence germination, establishment, and seedling biomass of both native and invasive plant species. We tested the hypothesis that common and widely distributed native and an invasive plant species in dryland ecosystems in California respond differently to increasing temperatures.

View Article and Find Full Text PDF

of long-term and future climate variability is crucial for impact assessment studies in drought-prone areas like the Giba basin in northern Ethiopia. This study has applied the statistical downscaling model (SDSM) and (De Martonne and Pinna combinative) aridity index methods to evaluate the climate system of the Giba basin. Historical data (1961-2019) from seven meteorological stations and global grided data were used for future climate projections (2020-2100) under the three emission scenarios (RCPs 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!