Objective: Communication between neurosurgeons and pathologists is mandatory for intraoperative decision-making and optimization of resection, especially for invasive masses. Handheld confocal laser endomicroscopy (CLE) technology provides in vivo intraoperative visualization of tissue histoarchitecture at cellular resolution. The authors evaluated the feasibility of using an innovative surgical telepathology software platform (TSP) to establish real-time, on-the-fly remote communication between the neurosurgeon using CLE and the pathologist.
Methods: CLE and a TSP were integrated into the surgical workflow for 11 patients with brain masses (6 patients with gliomas, 3 with other primary tumors, 1 with metastasis, and 1 with reactive brain tissue). Neurosurgeons used CLE to generate video-flow images of the operative field that were displayed on monitors in the operating room. The pathologist simultaneously viewed video-flow CLE imaging using a digital tablet and communicated with the surgeon while physically located outside the operating room (1 pathologist was in another state, 4 were at home, and 6 were elsewhere in the hospital). Interpretations of the still CLE images and video-flow CLE imaging were compared with the findings on the corresponding frozen and permanent H&E histology sections.
Results: Overall, 24 optical biopsies were acquired with mean ± SD 2 ± 1 optical biopsies per case. The mean duration of CLE system use was 1 ± 0.3 minutes/case and 0.25 ± 0.23 seconds/optical biopsy. The first image with identifiable histopathological features was acquired within 6 ± 0.1 seconds. Frozen sections were processed within 23 ± 2.8 minutes, which was significantly longer than CLE usage (p < 0.001). Video-flow CLE was used to correctly interpret tissue histoarchitecture in 96% of optical biopsies, which was substantially higher than the accuracy of using still CLE images (63%) (p = 0.005).
Conclusions: When CLE is employed in tandem with a TSP, neurosurgeons and pathologists can view and interpret CLE images remotely and in real time without the need to biopsy tissue. A TSP allowed neurosurgeons to receive real-time feedback on the optically interrogated tissue microstructure, thereby improving cross-functional communication and intraoperative decision-making and resulting in significant workflow advantages over the use of frozen section analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2022.3.FOCUS2250 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!