Salicylic acid (SA) is thought to be involved in phosphorus (P) stress response in plants, but the underlying molecular mechanisms are poorly understood. Here, we showed that P deficiency significantly increased the endogenous SA content by inducing the SA synthesis pathway, especially for up-regulating the expression of PAL3. Furthermore, rice SA synthetic mutants pal3 exhibited the decreased root and shoot soluble P content, indicating that SA is involved in P homeostasis in plants. Subsequently, application of exogenous SA could increase the root and shoot soluble P content through regulating the root and shoot cell wall P reutilization. In addition, - P + SA treatment highly upregulated the expression of P transporters such as OsPT2 and OsPT6, together with the increased xylem P content, suggesting that SA also participates in the translocation of the P from the root to the shoot. Moreover, both signal molecular nitric oxide (NO) and auxin (IAA) production were enhanced when SA is applied while the addition of respective inhibitor c-PTIO (NO scavenger) and NPA (IAA transport inhibitor) significantly decreased the root and shoot cell wall P remobilization in response to P starvation. Taken together, here SA-IAA-NO-cell wall P reutilization pathway has been discovered in P-starved rice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9349334 | PMC |
http://dx.doi.org/10.1186/s12284-022-00588-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!