Antifogging coatings for infrastructures and transparent objects have attracted much attention lately from the perspective of safety and visibility. We have developed a one-pot process to fabricate transparent composite films showing long-lasting antifogging and fast repeatable self-healing properties based on an integral blend (IB) method. This method does not require any specific pretreatments of inorganic fillers/particles. Thus, the precursor solutions could be prepared in a single step by simply mixing raw materials, .., poly(vinylpyrrolidone) (PVP) having different molecular weights (MWs: 55, 360, and 1300 k), nano-clay particles (NCPs), and amino-terminated organosilane (AOS). In this study, to control the degree of cross-linking between the PVP matrices and NCPs, addition of AOS as a cross-linker to the PVP matrices (weight percentage of AOS to the PVP matrices, α = 0.01-300%) was carefully controlled. Transparency and self-healing abilities/kinetics of the resulting samples were found to be strongly influenced by both the MWs of PVP and α values. Samples spin-coated with the lowest of PVP (55 k) and α values of 0.01-1% gave highly transparent and durable antifogging performance. For example, no fogging was observed for 7 days under >80% relative humidity, and scratches about 30 μm in width could be completely self-healed within a few hours. However, samples with α > 10% gave opaque/grayish films that did not show any self-healing abilities because of an increase in cross-linking of the matrices. The optimized precursor solution was also deposited directly onto the glass slides covered with a transparent porous silica nano-framework (SNF) by a spray-coating method. Due to the formation of the hard and superhydrophilic/hygroscopic SNF with a large surface area, durability of antifogging and self-healing properties of the composite films were moderately improved, compared to those on the flat glass slides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c01085DOI Listing

Publication Analysis

Top Keywords

composite films
12
self-healing properties
12
pvp matrices
12
transparent composite
8
films showing
8
durable antifogging
8
repeatable self-healing
8
properties based
8
based integral
8
integral blend
8

Similar Publications

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted.

View Article and Find Full Text PDF

Structure and Functional Characteristics of Novel Polyurethane/Ferrite Nanocomposites with Antioxidant Properties and Improved Biocompatibility for Vascular Graft Development.

Polymers (Basel)

January 2025

Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.

Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper-zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test.

View Article and Find Full Text PDF

Polymeric dielectrics have garnered significant interest worldwide due to their excellent comprehensive performance. However, developing polymeric dielectric films with high permittivity () and breakdown strength () and low dielectric loss (tan) presents a huge challenge. In this study, amorphous aluminum oxide (AlO, AO) transition interfaces with nanoscale thickness were constructed between titanium oxide (TiO, TO) nanosheets and polyvinylidene fluoride (PVDF) to manufacture composites (PVDF/TO@AO).

View Article and Find Full Text PDF

This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!