Otopetrin (OTOP) channels are proton-selective ion channels conserved among vertebrates and invertebrates, with no structural similarity to other ion channels. There are three vertebrate OTOP channels (OTOP1, OTOP2, and OTOP3), of which one (OTOP1) functions as a sour taste receptor. Whether extracellular protons gate OTOP channels, in addition to permeating them, was not known. Here, we compare the functional properties of the three murine OTOP channels using patch-clamp recording and cytosolic pH microfluorimetry. We find that OTOP1 and OTOP3 are both steeply activated by extracellular protons, with thresholds of pH <6.0 and 5.5, respectively, and kinetics that are pH-dependent. In contrast, OTOP2 channels are broadly active over a large pH range (pH 5 pH 10) and carry outward currents in response to extracellular alkalinization (>pH 9.0). Strikingly, we could change the pH-sensitive gating of OTOP2 and OTOP3 channels by swapping extracellular linkers that connect transmembrane domains. Swaps of extracellular linkers in the N domain, comprising transmembrane domains 1-6, tended to change the relative conductance at alkaline pH of chimeric channels, while swaps within the C domain, containing transmembrane domains 7-12, tended to change the rates of OTOP3 current activation. We conclude that members of the OTOP channel family are proton-gated (acid-sensitive) proton channels and that the gating apparatus is distributed across multiple extracellular regions within both the N and C domains of the channels. In addition to the taste system, OTOP channels are expressed in the vertebrate vestibular and digestive systems. The distinct gating properties we describe may allow them to subserve varying cell-type specific functions in these and other biological systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348849 | PMC |
http://dx.doi.org/10.7554/eLife.77946 | DOI Listing |
Nat Commun
August 2024
Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
The otopetrin (OTOP) proteins were recently characterized as extracellular proton-activated proton channels. Several recent OTOP channel structures demonstrated that the channels form a dimer with each subunit adopting a double-barrel architecture. However, the structural mechanisms underlying some basic functional properties of the OTOP channels remain unresolved, including extracellular pH activation, proton conducting pathway, and rapid desensitization.
View Article and Find Full Text PDFTrends Neurosci
March 2024
Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan. Electronic address:
In a recent study, Liang, Wilson, and colleagues demonstrated that the H-selective ion channel OTOP1, responsible for sour taste transduction, also functions as a gustatory sensor for ammonium in mice. Additionally, this research revealed a novel mode of channel activation by intracellular alkalinization, which is conserved across vertebrate species.
View Article and Find Full Text PDFElife
April 2023
Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, United States.
Otopetrin proteins (OTOPs) form proton-selective ion channels that are expressed in diverse cell types where they mediate detection of acids or regulation of pH. In vertebrates there are three family members: OTOP1 is required for formation of otoconia in the vestibular system and it forms the receptor for sour taste, while the functions of OTOP2 and OTOP3 are not yet known. Importantly, the gating mechanisms of any of the OTOP channels are not well understood.
View Article and Find Full Text PDFCommun Biol
October 2022
Department of Biological Sciences, St. John's University, Queens, NY, 11439, USA.
Otopetrin (Otop) proteins were recently found to function as proton channels, with Otop1 revealed to be the sour taste receptor in mammals. Otop proteins contain twelve transmembrane segments (S1-S12) which are divided into structurally similar N and C domains. The mechanisms by which Otop channels sense extracellular protons to initiate gating and conduct protons once the channels are activated remains largely elusive.
View Article and Find Full Text PDFElife
August 2022
Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, United States.
Otopetrin (OTOP) channels are proton-selective ion channels conserved among vertebrates and invertebrates, with no structural similarity to other ion channels. There are three vertebrate OTOP channels (OTOP1, OTOP2, and OTOP3), of which one (OTOP1) functions as a sour taste receptor. Whether extracellular protons gate OTOP channels, in addition to permeating them, was not known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!