Tuberculosis (TB) is the leading cause of death from any bacterial infection, causing 1.5 million deaths worldwide each year. Due to the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) there have been significant efforts aimed at developing novel drugs to treat TB. One promising drug target in Mtb is the arabinogalactan biosynthetic enzyme DprE1, and there have been over a dozen unique chemical scaffolds identified which inhibit the activity of this protein. Among the most promising lead compounds are the benzothiazinones BTZ043 and PBTZ169, both of which are currently in or have completed phase IIa clinical trials. Due to the potential clinical utility of these drugs, we sought to identify potential synergistic interactions and new mechanisms of resistance using a genome-scale CRISPRi chemical-genetic screen with PBTZ169. We found that knockdown of , the negative regulator of the drug efflux pump, confers resistance to PBTZ169. Mutations in are the most common form of resistance to bedaquiline and there is already abundant evidence of these mutations emerging in bedaquiline-treated patients. We confirmed that mutations from clinical isolates confer low level cross-resistance to BTZ043 and PBTZ169. While it is yet unclear whether mutations would render benzothiazinones ineffective in treating TB, these results highlight the importance of monitoring for clinically prevalent mutations during ongoing BTZ043 and PBTZ169 clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487612 | PMC |
http://dx.doi.org/10.1128/aac.00904-22 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
infections continue to pose a significant global health challenge, particularly due to the rise of multidrug-resistant strains, random mycobacterial mutations, and the complications associated with short-term antibiotic regimens. Currently, five approved drugs target cell wall biosynthesis in . This review provides a comprehensive analysis of these drugs and their molecular mechanisms.
View Article and Find Full Text PDFAntimicrob Agents Chemother
November 2024
Resistell AG, Muttenz, Switzerland.
Novel drugs and improved diagnostics for (MTB) are urgently needed and go hand in hand. We evaluated the activity of two benzothiazinone drug candidates (MCZ, PBTZ169; BTZ043) and their main metabolites against MTB using advanced nanomotion technology. The results demonstrated significant reductions in MTB viability within 7 h, indicating the potential for rapid, precise antibiotic susceptibility testing based on a phenotypic read-out in real time.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital College of Pharmacy, Medical University, Beijing, 100149, China. Electronic address:
Nitrobenzothiazinones (BTZs) represent a novel type of antitubercular agents targeting DprE1. Two clinical candidates BTZ043 and PBTZ169, as well as many other BTZs showed potent anti-TB activity, but they are all highly lipophilic and their poor aqueous solubility is still a serious issue need to be addressed. Here, we designed and synthesized a series of new BTZ derivatives, wherein a hydrophilic COOH or NH group is directly attached to the oxime moiety of TZY-5-84 discovered in our lab, through various linkers.
View Article and Find Full Text PDFIn Silico Pharmacol
August 2024
Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat India.
Bioinform Biol Insights
May 2024
Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco.
Tuberculosis (TB) remains a global health challenge with the emergence of drug-resistant Mycobacterium tuberculosis variants, necessitating innovative drug molecules. One potential target is the cell wall synthesis enzyme decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1), crucial for virulence and survival. This study employed virtual screening of 111 Protein Data Bank (PDB) database molecules known for their inhibitory biological activity against DprE1 with known IC50 values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!