The estimation of defects positioning occurring in the interface between different materials is performed by using an artificial neural network modeled as an inverse heat conduction problem. Identifying contact failures in the bonding process of different materials is crucial in many engineering applications, ranging from manufacturing, preventive inspection and even failure diagnosis. This can be modeled as an inverse heat conduction problem in multilayered media, where thermography temperature measurements from an exposed surface of the media are available. This work solves this inverse problem with an artificial neural network that receives these experimental data as input and outputs the thermalphysical properties of the adhesive layer, where defects can occur. An autoencoder is used to reduce the dimension of the transient 1D thermography data, where its latent space represents the experimental data in a lower dimension, then these reduced data are used as input to a fully connected multilayer perceptron network. Results indicate that this is a promising approach due to the good accuracy and low computational cost observed. In addition, by including different noise levels within a defined range in the training process, the network can generalize the experimental data input and estimate the positioning of defects with similar quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765202220211577 | DOI Listing |
Adv Sci (Weinh)
January 2025
College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.
Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.
View Article and Find Full Text PDFSci Rep
January 2025
University of Ghana, P.O. Box 134, Legon-Accra, Ghana.
Sentiment analysis has become a difficult and important task in the current world. Because of several features of data, including abbreviations, length of tweet, and spelling error, there should be some other non-conventional methods to achieve the accurate results and overcome the current issue. In other words, because of those issues, conventional approaches cannot perform well and accomplish results with high efficiency.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, College of Engineering and Computer Sciences, Jazan University, P.O Box 45124, Jazan, Saudi Arabia.
Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Information Engineering, Nanjing Tech University, Nanjing, 211800, China.
Graph data is essential for modeling complex relationships among entities. Graph Neural Networks (GNNs) have demonstrated effectiveness in processing low-order undirected graph data; however, in complex directed graphs, relationships between nodes extend beyond first-order connections and encompass higher-order relationships. Additionally, the asymmetry introduced by edge directionality further complicates node interactions, presenting greater challenges for extracting node information.
View Article and Find Full Text PDFISA Trans
January 2025
School of Artificial Intelligence, Anhui University, Hefei 230601, China. Electronic address:
This study investigates pigeon-like flexible flapping wings, which are known for their low energy consumption, high flexibility, and lightweight design. However, such flexible flapping wing systems are prone to deformation and vibration during flight, leading to performance degradation. It is thus necessary to design a control method to effectively manage the vibration of flexible wings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!