A large body of literature has identified that circular RNAs play critical roles in regulating the occurrence and development of cardiovascular disease. In the present study, we intended to provide new ideas and perspectives on the functional role of circ-CBFB in hypoxia/reoxygenation (H/R)-injured cardiomyocytes. We observed that circ-CBFB expression was enhanced which was accompanied by a miR-495-3p reduction in response to H/R exposure. Functionally, deletion of circ-CBFB obviously potentiated cell viability and restrained cell apoptosis, which was accompanied by a remarkable elevation of antiapoptotic Bcl-2 but the repression of proapoptotic Bax and cleaved caspase-3 in response to H/R. Additionally, the absence of circ-CBFB dramatically prohibited H/R-evoked cardiomyocyte oxidative stress, as revealed by a decrease in reactive oxygen species overproduction, diminution in MAD content, and enhancement in SOD, CAT, and GSH-Px activities. Moreover, elimination of circ-CBFB resulted in improvement of mitochondrial dysfunction, as assessed by mitochondrial membrane potential, adenosine triphosphate production, and the release of cyto-c. Interestingly, circ-CBFB inversely regulated miR-495-3p expression via acting as a competing endogenous RNA. VDAC1 was identified to be a functional target of miR-495-3p and positively modulated by circ-CBFB. Mechanically, dissipation of miR-495-3p or augmentation of VDAC1 manifestly counteracted the beneficial effects of circ-CBFB knockdown on H/R-elicited cardiomyocyte insult. Collectively, these observations demonstrated that absence of circ-CBFB offered cardio-protection against H/R-triggered cardiomyocyte injury by relieving apoptosis, oxidative stress, and mitochondria dysfunction through miR-495-3p/VDAC1 axis. This work unveiled an innovative axis of circ-CBFB/miR-495-3p/VDAC1 in H/R-challenged cardiomyocyte damage, exerting its potential in providing new thoughts in acute myocardial infarction management.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.23189DOI Listing

Publication Analysis

Top Keywords

circ-cbfb
10
cardiomyocyte injury
8
response h/r
8
absence circ-cbfb
8
oxidative stress
8
cardiomyocyte
5
mir-495-3p
5
circ-cbfb exacerbates
4
exacerbates hypoxia/reoxygenation-triggered
4
hypoxia/reoxygenation-triggered cardiomyocyte
4

Similar Publications

A large body of literature has identified that circular RNAs play critical roles in regulating the occurrence and development of cardiovascular disease. In the present study, we intended to provide new ideas and perspectives on the functional role of circ-CBFB in hypoxia/reoxygenation (H/R)-injured cardiomyocytes. We observed that circ-CBFB expression was enhanced which was accompanied by a miR-495-3p reduction in response to H/R exposure.

View Article and Find Full Text PDF

p66Shc, a master regulator of mitochondrial reactive oxygen species (mtROS), is a crucial mediator of hepatocyte oxidative stress. However, its functional contribution to acetaminophen (APAP)-induced liver injury and the mechanism by which it is modulated remain unknown. Here, we aimed to assess the effect of p66Shc on APAP-induced liver injury and to evaluate if circular RNA (circRNA) functions as a competitive endogenous RNA (ceRNA) to mediate p66Shc in APAP-induced liver injury.

View Article and Find Full Text PDF

Circular RNA (circRNA) belongs to the non-coding RNA family and is involved in various human cancers, such as lung cancer and colorectal cancer. Nevertheless, whether circRNA expression is related to chronic lymphocytic leukemia (CLL) progression remains largely unclear. In our study, we investigated the role of circ-CBFB in CLL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!