New Cδ-H⋯O histidine hydrogen bonding interactions in various proteins are identified by neutron diffraction and computationally characterized. Neutron diffraction data shows several H-bond motifs with the Cδ-H moiety in histidine side chains, including interactions in β-sheets and with coordinated waters, mostly with histidinium and τ-tautomers. In yellow protein, an active site histidine H-bonds Cδ-H to a main chain carbonyl while the Cε-H bond coordinates a water molecule. Although the H-bonding ability of Cε-H bonds in histidine have been previously identified, analysis of neutron diffraction structures reveals Cε-H H-bonds in notable active site interactions: for the proximal histidine in myoglobin; a zinc-bound histidine in human carbonic anhydrase II; within the Ser-Asp-His catalytic triad of the trypsin active site; and a histidine in the proton shuttle mechanism of RNase A, in addition to more general roles of coordinating water and forming H-bonds with carbonyl groups in β-sheets within a number of proteins. Properties of these H-bonds were computationally investigated using 5-methylimidazole and 5-methylimidazolium as models for histidine and histidinium. The π- and τ-tautomeric states of 5-methylimidazole were investigated, as both histidine tautomers are observed in the crystal structures. The newly characterized Cε-H⋯O and Cδ-H⋯O model complexes with water and acetone meet the overwhelming majority of IUPAC H-bonding criteria. 5-Methylimidazolium forms complexes that are nearly twice as strong as the respective neutral τ-5-methylimidazole and π-5-methylimidazole complexes. While the τ- and π-tautomers form Cε-H⋯O complexes of similar strength, the τ-Cδ-H⋯O interaction is approximately twice as strong as the π-Cδ-H⋯O interaction. Calculated charges on C-H (and N-H) hydrogens not participating in the H-bond are only slightly perturbed upon complex formation, implying that formation of one H-bond does not diminish the molecule's capacity for further H-bond formation at other sites in the imidazole ring. Overall, findings indicate that the Cδ-H⋯O interaction may be important for β-sheet stability, conformation, interactions with solvent, and mechanisms in the active site. Recognition of C-H bond polarity and hydrogen bonding ability in histidine may improve molecular modeling and provide further insight into the diverse roles of histidine in protein structure-function-dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp02048c | DOI Listing |
Protein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFBiochemistry
December 2024
Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, Hannover 30167, Germany.
Farnesyl pyrophosphate derivatives bearing an additional oxygen atom at position 5 proved to be very suitable for expanding the substrate promiscuity of sesquiterpene synthases (STSs) and the formation of new oxygenated terpenoids. Insertion of an oxygen atom in position 9, however, caused larger restraints that led to restricted acceptance by STSs. In order to reduce some of the proposed restrictions, two FPP-ether derivatives with altered substitution pattern around the terminal olefinic double bond were designed.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Türkiye.
The increasing global prevalence of Alzheimer's disease necessitates the development of novel therapeutic approaches. Neurodegenerative diseases are associated with increased oxidative stress and levels of cholinesterase enzymes. Hence, the development of cholinesterase inhibitors and antioxidants may provide neuroprotective effects.
View Article and Find Full Text PDFBackground: Understanding site-related factors that influence enrolment within multicenter randomized controlled trials (RCT) may help reduce trial delays and cost over-runs and prevent early trial discontinuation. In this analysis of PROSPECT (Probiotics: Prevention of Severe Pneumonia and Endotracheal Colonization Trial), we describe patient enrolment patterns and examine factors influencing site-based monthly enrolment.
Design: Retrospective analysis of a multicenter RCT.
Int J Biol Macromol
December 2024
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
In this study, we developed a novel composite catalytic hydrogel, which integrates excellent mechanical properties, catalytic activity, and sensing performance. Discarded hydrogel sensors are reused as templates for in-situ generation of metal nanoparticles, and multifunctional hydrogels combining sensing and catalysis are realized. Polyacrylamide (PAM) provides a three-dimensional network structure, while octadecyl methacrylate (SMA) acts as a hydrophobic association center, enhancing the structural stability of the hydrogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!