The economical production of 5-aminolevulinic acid (ALA) has recently received increasing attention for its extensive use in agriculture. In this study, a strain of Bacillus cereus PT1 could initially produce ALA at a titre of 251.72 mg/L by using a hydrolysate mixture of low-cost cassava residue and fish waste. The integration of endogenous hemA encoding glutamyl-tRNA reductase led to a 39.30% increase in ALA production. Moreover, improving cell permeability by deletion of the LytR-CpsA-Psr (LCP) family gene tagU led to a further increase of 59.73% in ALA production. Finally, the engineered strain B. cereus PT1-hemA-ΔtagU produced 2.62 g/L of ALA from the previously mentioned hydrolysate mixture in a 7-L bioreactor. In a pot experiment, foliar spray of the ALA produced by B. cereus PT1-hemA-ΔtagU from the hydrolysates increased salt tolerance of cucumber by improving chlorophyll content and catalase activity, while decreasing malondialdehyde content. Overall, this study demonstrated an economic way to produce ALA using a microbial platform and evidenced the potential of ALA in agricultural application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871517 | PMC |
http://dx.doi.org/10.1111/1751-7915.14118 | DOI Listing |
J Agric Food Chem
January 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
5-Aminolevulinic acid synthase (ALAS) is the key rate-limiting enzyme in the synthesis of the vital biosynthetic intermediate 5-aminolevulinic acid (ALA). However, its catalytic efficiency is compromised due to its low activity and poor stability. Here, we obtained the mutant I325M/V390Y/H391I (T6), which exhibited a 7.
View Article and Find Full Text PDFJ Adv Res
December 2024
College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China. Electronic address:
Introduction: 5-Aminolevulinic acid (ALA) is an essential biosynthetic precursor of tetrapyrrole compounds, naturally occurring in all living organisms. It has also been suggested as a new plant growth regulator. Treatment with ALA promotes strawberry Na homeostasis under salt stress.
View Article and Find Full Text PDFMetab Eng
December 2024
State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China. Electronic address:
Microbial cell factories (MCFs) have emerged as a sustainable tool for the production of value-added biochemicals. However, developing high-performance MCFs remains a major challenge to fulfill the burgeoning demands of global markets. This study aimed to establish the B.
View Article and Find Full Text PDFiScience
December 2024
Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine.
5-Aminolevulinic acid (5-ALA) is an essential compound in the biosynthesis of heme, playing a critical role in various physiological processes within the human body. This review provides the thorough analysis of the latest research on the molecular mechanisms and potential therapeutic benefits of 5-ALA in managing metabolic disorders. The ability of 5-ALA to influence immune response and inflammation, oxidative/nitrosative stress, antioxidant system, mitochondrial functions, as well as carbohydrate and lipid metabolism, is mediated by molecular mechanisms associated with the suppression of the transcription factor NF-κB signaling pathway, activation of the transcription factor Nrf2/heme oxygenase-1 (HO-1) system leading to the formation of heme-derived reaction products (carbon monoxide, ferrous iron, biliverdin, and bilirubin), which may contribute to HO-1-dependent cytoprotection through antioxidant and immunomodulatory effects.
View Article and Find Full Text PDFInflammation
December 2024
Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan.
5-aminolevulinic acid (5-ALA) is an amino acid essential for the synthesis of heme, which is important for various cellular functions, including the mitochondrial electron transport chain. We previously established heterozygous knockout mice (Alas1) for 5-ALA synthase 1 (ALAS1), the rate-limiting enzyme for 5-ALA synthesis, and reported that the mice developed non-obese insulin-resistant diabetes. In the present study, we used these mice to analyze the role of 5-ALA in the immune system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!