A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

COVID-19 infection prediction from CT scan images of lungs using Iterative Convolution Neural Network model. | LitMetric

World Health Organization has defined COVID-19 as a contagious, communicable and fast spreading disease engendered by the Corona virus, SARS-CoV-2, is a respirational microorganism. Computerized Tomography (CT) scan images of the chest helps in detecting COVID 19 infection in a fast way with much reliability. In this paper, chest CT scan images of COVID and Non-COVID categories are considered to train the supervised classifier, Iterative convolution Neural Network. The training process is done with six different training data size. The trained models are iterated for the fixed size of testing data (20 images). The same set of training and testing processes are done with two different Iterative Convolutional Neural Network architectures, one with two hidden layers (CNN1) and another with three hidden layers (CNN2). The iterations are extended up to 7, but the model performance is degraded after the 6th iteration, which makes to fix the iteration level as 5 for both CNN models. Six different training sets with five iterations have led into 30 CNN models. For two different CNN architectures, which lead to 60 different models. The model designed with 100 training sets in both CNN1 and CNN2, have produced the high accuracy in COVID classification than any other models. The better classification accuracy 89% is achieved from CNN2 model with its 5th iteration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9335012PMC
http://dx.doi.org/10.1016/j.advengsoft.2022.103214DOI Listing

Publication Analysis

Top Keywords

scan images
12
neural network
12
iterative convolution
8
convolution neural
8
hidden layers
8
cnn models
8
training sets
8
training
5
models
5
covid-19 infection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!