AI Article Synopsis

  • Plasma cells, derived from B lymphocytes in the bone marrow, are important white blood cells that produce antibodies, helping combat bacteria and viruses and prevent inflammation.
  • The study presents a new model combining ResNet and UNet networks for effective segmentation and analysis of white blood cells (leukocytes) from blood samples, overcoming challenges in image processing.
  • Experimental results demonstrate that this model achieves approximately 96% segmentation accuracy, outperforming previous methods like DeepLabV3+ and ResNet-50 in diagnosing blood diseases.

Article Abstract

In the bone marrow, plasma cells are made up of B lymphocytes and are a type of WBC. These plasma cells produce antibodies that help to keep bacteria and viruses at bay, thus preventing inflammation. This presents a major challenge for segmenting blood cells, since numerous image processing methods are used before segmentation to enhance image quality. White blood cells can be analyzed by a pathologist with the aid of computer software to identify blood diseases accurately and early. This study proposes a novel model that uses the ResNet and UNet networks to extract features and then segments leukocytes from blood samples. Based on the experimental results, this model appears to perform well, which suggests it is an appropriate tool for the analysis of hematology data. By evaluating the model using three datasets consisting of three different types of WBC, a cross-validation technique was applied to assess it based on the publicly available dataset. The overall segmentation accuracy of the proposed model was around 96%, which proved that the model was better than previous approaches, such as DeepLabV3+ and ResNet-50.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293541PMC
http://dx.doi.org/10.1155/2022/5913905DOI Listing

Publication Analysis

Top Keywords

blood cells
12
white blood
8
plasma cells
8
blood
5
cells
5
model
5
segmentation classification
4
classification white
4
cells unet
4
unet bone
4

Similar Publications

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Previous studies in sports science suggested that regular exercise has a positive impact on human health. However, the effects of endurance sports and their underlying mechanisms are still not completely understood. One of the main debates regards the modulation of immune dynamics in high-intensity exercise.

View Article and Find Full Text PDF

Background: Leukemia may form at any age, from newborns to the elderly, and accounts for considerable mortality worldwide.

Objectives: Nerolidol (NRD) is isolated from the aromatic florae oils and was found to have anticancer activities. However, the role of NRD in antiproliferative and apoptosis actions in acute lymphoblastic leukemia (ALL) is unclear.

View Article and Find Full Text PDF

Introduction: Multiple Sclerosis (MS) is a complex auto-inflammatory disease affecting the brain and spinal cord, which results in axonal de-myelination and symptoms including fatigue, pain, and difficulties with vision and mobility. The involvement of the immune system in the pathology of MS is well established, particularly the adaptive T cell response, and there has been a particular focus on the IL-17-producing subset of Th17 cells and their role in driving disease. However, the importance of innate immune cells has not been so well characterised.

View Article and Find Full Text PDF

Vitiligo is an autoimmune disease that has been recognized, stigmatized, and treated for millennia. Recent translational research has revealed key mechanisms of disease, including cellular stress, innate immune activation, T cell-mediated elimination of melanocytes from the skin resulting in clinically apparent white spots, as well as stem cell regeneration that reverses established lesions. Many of these pathways have been targeted therapeutically, leading to the first FDA-approved medication to reverse the disease, with many more in clinical trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!