Targeting epigenetic modifiers to reprogramme macrophages in non-resolving inflammation-driven atherosclerosis.

Eur Heart J Open

Laboratory of Cancer Precision Medicine, Institute of Translational Medicine, The First Hospital of Jilin University, 519 Dong Min Zhu Street, Changchun, Jilin 130061, China.

Published: September 2021

Epigenomic and epigenetic research has been providing several new insights into a variety of diseases caused by non-resolving inflammation, including cardiovascular diseases. Atherosclerosis (AS) has long been recognized as a chronic inflammatory disease of the arterial walls, characterized by local persistent and stepwise accelerating inflammation without resolution, also known as uncontrolled inflammation. The pathogenesis of AS is driven primarily by highly plastic macrophages via their polarization to pro- or anti-inflammatory phenotypes as well as other novel subtypes recently identified by single-cell sequencing. Although emerging evidence has indicated the key role of the epigenetic machinery in the regulation of macrophage plasticity, the investigation of epigenetic alterations and modifiers in AS and related inflammation is still in its infancy. An increasing number of the epigenetic modifiers (e.g. TET2, DNMT3A, HDAC3, HDAC9, JMJD3, KDM4A) have been identified in epigenetic remodelling of macrophages through DNA methylation or histone modifications (e.g. methylation, acetylation, and recently lactylation) in inflammation. These or many unexplored modifiers function to determine or switch the direction of macrophage polarization via transcriptional reprogramming of gene expression and intracellular metabolic rewiring upon microenvironmental cues, thereby representing a promising target for anti-inflammatory therapy in AS. Here, we review up-to-date findings involving the epigenetic regulation of macrophages to shed light on the mechanism of uncontrolled inflammation during AS onset and progression. We also discuss current challenges for developing an effective and safe anti-AS therapy that targets the epigenetic modifiers and propose a potential anti-inflammatory strategy that repolarizes macrophages from pro- to anti-inflammatory phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241575PMC
http://dx.doi.org/10.1093/ehjopen/oeab022DOI Listing

Publication Analysis

Top Keywords

epigenetic modifiers
12
uncontrolled inflammation
8
pro- anti-inflammatory
8
anti-inflammatory phenotypes
8
epigenetic
7
inflammation
6
modifiers
5
macrophages
5
targeting epigenetic
4
modifiers reprogramme
4

Similar Publications

A comprehensive allele specific expression resource for the equine transcriptome.

BMC Genomics

January 2025

Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA.

Background: Allele-specific expression (ASE) analysis provides a nuanced view of cis-regulatory mechanisms affecting gene expression.

Results: An equine ASE analysis was performed, using integrated Iso-seq and short-read RNA sequencing data from four healthy Thoroughbreds (2 mares and 2 stallions) across 9 tissues from the Functional Annotation of Animal Genomes (FAANG) project. Allele expression was quantified by haplotypes from long-read data, with 42,900 allele expression events compared.

View Article and Find Full Text PDF

Background: Whether adverse childhood experiences (ACEs) are associated with accelerated epigenetic aging over time among the Hispanic/Latino population remains unknown. This study examined the longitudinal association between ACEs and epigenetic age acceleration (EAA), as well as potential effect modifiers, among a sample of Hispanic/Latino adults.

Methods: We analyzed 960 Hispanic/Latino adults with DNA methylation (DNAm) profile data from two visits (approximately six years apart) sampled from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).

View Article and Find Full Text PDF

The genetic circuitry that encodes the developmental programme of mammals is regulated by transcription factors and chromatin modifiers. During early gestation, the three embryonic germ layers are established in a process termed gastrulation. The impact of deleterious mutations in chromatin modifiers such as the polycomb proteins manifests during gastrulation, leading to early developmental failure and lethality in mouse models.

View Article and Find Full Text PDF

A systematic review of associations between the environment, DNA methylation, and cognition.

Environ Epigenet

December 2024

Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens' University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom.

The increasing prevalence of neurodegenerative diseases poses a significant public health challenge, prompting a growing focus on addressing modifiable risk factors of disease (e.g. physical inactivity, mental illness, and air pollution).

View Article and Find Full Text PDF

Introduction: The regulation of expression during T-cell development and immune responses is essential for proper lineage commitment and function in the periphery. However, the mechanisms of genetic and epigenetic regulation are complex, and their interplay not entirely understood. Previously, we demonstrated the need for CD4 upregulation during positive selection to ensure faithful commitment of MHC-II-restricted T cells to the CD4 lineage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!