To investigate the consequence of different substitution positions of various π-linkers on the photovoltaic properties of an organic solar cell molecule, we have introduced two series of six three-donor molecules, by the substitution of some effective π-linkers on the A-π-D-π-A type reference molecule IECIO-4F (taken as IOR). In series "a" the thienyl or furyl bridge is directly linked between the donor and acceptor moieties, while in series "b" the phenyl ring of the same bridge is working as the direct point of attachment. The frontier molecular orbitals, density of states, transition density matrix, molecular electrostatic potential surfaces, exciton binding energy, excitation energy, wavelength of maximum absorption, open-circuit voltage, fill factor, and some other photovoltaic attributes of the proposed molecules were analyzed through density functional theory (DFT) and its time-dependent (TD) approach; the TD-DFT method. Though both series of newly derived molecules were a step up from the reference molecule in almost all of the studied characteristics, the "a" series (IO1 to IO3) seemed to be better due to their desirable properties such as the highest maximum absorption wavelength ( ), open-circuit voltage, and fill factor, along with the lowest excitation and exciton dissociation energy, of its molecules. Also, the studied morphology, optical characteristics, and electronic attributes of this series of proposed molecules signified the fact that the molecules with thienyl or furyl ring working as the direct link between the acceptor and donor molecules showed enhanced charge transfer abilities, and could provide a maximum quantum yield of the solar energy supplied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297698PMC
http://dx.doi.org/10.1039/d2ra04097bDOI Listing

Publication Analysis

Top Keywords

a-π-d-π-a type
8
reference molecule
8
thienyl furyl
8
working direct
8
maximum absorption
8
open-circuit voltage
8
voltage fill
8
fill factor
8
proposed molecules
8
molecules
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!