Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Surgical resection is a mainstay in the treatment of pediatric brain tumors to achieve tissue diagnosis and tumor debulking. While maximal safe resection of tumors is desired, it can be challenging to differentiate normal brain from neoplastic tissue using only microscopic visualization, intraoperative navigation, and tactile feedback. Here, we investigate the potential for Raman spectroscopy (RS) to accurately diagnose pediatric brain tumors intraoperatively.
Methods: Using a rapid acquisition RS device, we intraoperatively imaged fresh ex vivo brain tissue samples from 29 pediatric patients at the Lucile Packard Children's Hospital between October 2018 and March 2020 in a prospective fashion. Small tissue samples measuring 2-4 mm per dimension were obtained with each individual tissue sample undergoing multiple unique Raman spectra acquisitions. All tissue samples from which Raman spectra were acquired underwent individual histopathology review. A labeled dataset of 678 unique Raman spectra gathered from 160 samples was then used to develop a machine learning model capable of (1) differentiating normal brain from tumor tissue and (2) normal brain from low-grade glioma (LGG) tissue.
Results: Trained logistic regression model classifiers were developed using our labeled dataset. Model performance was evaluated using leave-one-patient-out cross-validation. The area under the curve (AUC) of the receiver-operating characteristic (ROC) curve for our tumor vs normal brain model was 0.94. The AUC of the ROC curve for LGG vs normal brain was 0.91.
Conclusions: Our work suggests that RS can be used to develop a machine learning-based classifier to differentiate tumor vs non-tumor tissue during resection of pediatric brain tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9341441 | PMC |
http://dx.doi.org/10.1093/noajnl/vdac118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!