Principles of Industry 4.0 direct us to predict how pharmaceutical operations and regulations may exist with automation, digitization, artificial intelligence (AI), and real time data acquisition. Machine learning (ML), a sub-discipline of AI, involves the use of statistical tools to extract the desired information either through understanding the underlying patterns in the information or by development of mathematical relationships among the critical process parameters (CPPs) and critical quality attributes (CQAs) of biopharmaceuticals. ML is still in its infancy for directly supporting the quality-by-design based development and manufacturing of biopharmaceuticals. However, adoption of ML-based models in place of conventional multi-variate-data-analysis (MVDA) is increasing with the accumulation of large-scale data. This has been majorly contributed by the real-time monitoring of process variables and quality attributes of products through the implementation of process analytical technology in biopharmaceutical manufacturing. All aspects of healthcare, from drug design to product distribution, are complex and multidimensional. Thus, ML-based approaches are being applied to achieve sophistication, accuracy, flexibility and agility in all these areas. This review discusses the potential of ML for addressing the complex issues in diverse areas of biopharmaceutical development, such as biopharmaceuticals design and assessment of early stage development, upstream and downstream process development, analysis, characterization and prediction of post-translational modifications (PTMs), formulation, and stability studies. Moreover, the challenges in acquisition, cleaning and structuring the bioprocess data, which is one of the major hurdles in implementation of ML in biopharma industry, have also been discussed. Regulatory perspectives on implementation of AI/ML in the biopharma sector have also been briefly discussed. This article is a bird's eye view on the recent developments and applications of ML in overcoming the challenges for adopting "Industry - 4.0" in the biopharma industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.3291DOI Listing

Publication Analysis

Top Keywords

machine learning
8
quality attributes
8
biopharma industry
8
development
6
exploring potential
4
potential machine
4
learning efficient
4
efficient development
4
development production
4
biopharmaceuticals
4

Similar Publications

Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.

Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.

View Article and Find Full Text PDF

Introduction: Unsupervised feature learning methods inspired by natural language processing (NLP) models are capable of constructing patient-specific features from longitudinal Electronic Health Records (EHR).

Design: We applied document embedding algorithms to real-world paediatric intensive care (PICU) EHR data to extract patient-specific features from 1853 patients' PICU journeys using 647 unique lab tests and medication events. We evaluated the clinical utility of the patient features via a K-means clustering analysis.

View Article and Find Full Text PDF

Background: Tumor microenvironment (TME), particularly immune cell infiltration, programmed cell death (PCD) and stress, has increasingly become a focal point in colorectal cancer (CRC) treatment. Uncovering the intricate crosstalk between these factors can enhance our understanding of CRC, guide therapeutic strategies, and improve patient prognosis.

Methods: We constructed an immune-related cell death and stress (ICDS) prognostic model utilizing machine learning methodologies.

View Article and Find Full Text PDF

Background: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperative prediction model capable of accurately distinguishing between gallbladder adenomas and cholesterol polyps using machine learning algorithms.

Materials And Methods: We retrospectively analysed the patients' clinical baseline data, serological indicators, and ultrasound imaging data.

View Article and Find Full Text PDF

Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!