Ovarian cancer (OC) is one the most life-threatening cancers affecting women's health worldwide. Immunotherapy has become a promising treatment for a variety of cancers, but the therapeutic effects in OC remain limited. In this study, we constructed a macrophage risk score (MRS) based on M1 and M2 macrophages and a gene risk score (GRS) based on the prognostic genes associated with MRS. Next, cell-cell communication analysis was performed using single-cell RNA (scRNA) sequencing data. Survival status and immune characteristics were compared between the high- and low-score groups separated by MRS or GRS. Our results suggested that MRS and GRS can identify the immune subtypes of OC patients with better overall survival (OS) and inflammatory immune microenvironment. Moreover, M1 and M2 macrophages may affect the prognosis of OC patients through signal communication with CD8 T cells. Finally, functional differences between the two groups separated by GRS were elucidated. Taken together, this study constructed two useful models for the identification of immune subtypes in OC, which has a better prognosis and may have a sensitive response to immune checkpoint inhibitors (ICIs). The hub genes for the construction of GRS may be potential synergetic targets for immunotherapy in OC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9346122 | PMC |
http://dx.doi.org/10.1038/s41598-022-17645-7 | DOI Listing |
Work in many systems has shown large-scale changes in gene expression during aging. However, many studies employ just two, arbitrarily-chosen timepoints at which to measure expression, and can only observe an increase or a decrease in expression between "young" and "old" animals, failing to capture any dynamic, non-linear changes that occur throughout the aging process. We used RNA sequencing to measure expression in male head tissue at 15 timepoints through the lifespan of an inbred strain.
View Article and Find Full Text PDFUnlabelled: Members of the gut microbiome encounter a barrage of host- and microbe-derived microbiocidal factors that must be overcome to maintain fitness in the intestine. The long-term stability of many gut microbiome strains within the microbiome suggests the existence of strain-specific strategies that have evolved to foster resilience to such insults. Despite this, little is known about the mechanisms that mediate this resistance.
View Article and Find Full Text PDFTertiary lymphoid structures (TLS) are lymphoid formations that develop in non-lymphoid tissues during chronic inflammation, autoimmune diseases, and cancer. Accurate identification and quantification of TLS in tissue can provide crucial insights into the immune response of several disease processes including antitumor immune response. TLS are defined as aggregates of T cells, B cells and dendritic cells.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
Background: Sepsis is an uncontrolled reaction to infection that causes severe organ dysfunction and is a primary cause of ARDS. Patients suffering both sepsis and ARDS have a poor prognosis and high mortality. However, the mechanisms behind their simultaneous occurrence are unclear.
View Article and Find Full Text PDFBackground: Pulmonary arterial hypertension (PAH) is a rare but severe and life-threatening condition that primarily affects the pulmonary blood vessels and the right ventricle of the heart. The limited availability of human tissue for research ~most of which represents only end-stage disease~ has led to a reliance on preclinical animal models. However, these models often fail to capture the heterogeneity and complexity of the human condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!