Black soybean (BSB), which contains cyanidin-3-O-glucoside (C3G) and procyanidins, is cooked with rice in Japan. The color of the cooked rice is purplish red due to the binding of C3G and reddish oxidation products of procyanidins. These components can slowdown pancreatin-induced hydrolysis of amylose more significantly than the hydrolysis of amylopectin, and can react with nitrous acid in the stomach. This manuscript deals with the effects of nitrous acid on pancreatin-induced hydrolysis of amylose heated with BSB extract. The hydrolysis of amylose heated with BSB extract was slow, and the slowdown was due to the binding of C3G/its degradation products and degradation products of procyanidins. The amylose hydrolysis was slowed down further by treating with nitrite under gastric conditions. The further slowdown was discussed to be due to the binding of the products, which were formed by the reaction of procyanidins with nitrous acid, to amylose. In the products, dinitroprocyanidins were included. In this way, the digestibility of amylose heated with BSB extract can be slowed down further by reacting with nitrous acid in the stomach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9345987PMC
http://dx.doi.org/10.1038/s41598-022-17476-6DOI Listing

Publication Analysis

Top Keywords

hydrolysis amylose
16
amylose heated
16
nitrous acid
16
heated bsb
12
bsb extract
12
black soybean
8
treating nitrite
8
nitrite gastric
8
gastric conditions
8
cooked rice
8

Similar Publications

In this study, high performance porous starch was prepared by combining freeze-thawing and enzymatic hydrolysis with the aim of evaluating its potential as a starch emulsifier in Pickering emulsions. The results indicate that the combined treatment significantly altered the specific surface area of starch (from 0.3257 m/g to 1.

View Article and Find Full Text PDF

Morphological modulation of starch chains from nanorod to nanospindle via temperature-controlling rearrangement.

Int J Biol Macromol

December 2024

College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China. Electronic address:

Polymorphic nanoparticles, including starch nanoparticles (SNPs), have increasingly attracted attention, particularly rod-shaped variants, which are used for constructing anisotropic systems. Compared to symmetrically spherical particles, they show superior properties such as gastrointestinal retention for functional nutrients/drugs delivery and mechanical enhancement of filled materials, but their controlled fabrication remains a challenge. In this study, we yielded polymorphic SNPs with nearly axisymmetric geometries through a combined alkaline hydrolysis and nanoprecipitation method, followed by temperature-controlling rearrangement.

View Article and Find Full Text PDF

The digestibility of starch in staple foods has rarely been examined at the bio-macromolecular level. This study addresses this by investigating the fine structures of amylose and amylopectin to understand their roles in starch digestibility in cooked white rice. Using the static INFOGEST protocol and oral processing by human volunteers, we assessed the starch digestion characteristics of 13 rice varieties, with amylose and amylopectin chain length distribution being analyzed using size-exclusion chromatography and high-performance anion exchange chromatography, respectively.

View Article and Find Full Text PDF

This study delved into the interaction between corn starch and ethyl maltol during innovative repeated continuous heat-moisture treatment (RCHMT) and its impact on the quality of fried chicken nuggets. The results reveal that the complexation ratio of ethyl maltol is about 31.6%, and the complex creates dense microporous structures.

View Article and Find Full Text PDF
Article Synopsis
  • Nuciferine has potential health benefits like lowering blood sugar and fat but faces challenges due to poor water solubility and low bioavailability.
  • Researchers created a ternary composite using short amylose, zein, and pectin to stabilize Pickering emulsions that can effectively deliver nuciferine, significantly improving its stability and bioavailability.
  • The optimal conditions for preparing these emulsions, which achieved a high encapsulation rate for nuciferine, resulted in small particle sizes and demonstrated good stability against various environmental factors, supporting better delivery and effectiveness of the active ingredient.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!