Can the combination of time-lapse parameters and clinical features predict embryonic ploidy status or implantation?

Reprod Biomed Online

Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 252 Dalin Road Shanghai 200011, China. Electronic address:

Published: October 2022

Research Question: Can models based on artificial intelligence predict embryonic ploidy status or implantation potential of euploid transferred embryos? Can the addition of clinical features into time-lapse monitoring (TLM) parameters as input data improve their predictive performance?

Design: A single academic fertility centre, retrospective cohort study. A total of 773 high-grade euploid and aneuploid blastocysts from 212 patients undergoing preimplantation genetic testing (PGT) between July 2016 and July 2021 were studied for ploidy prediction. Among them, 170 euploid embryos were single-transferred and included for implantation analysis. Five machine learning models and two types of deep learning networks were used to develop the predictive algorithms. The predictive performance was measured using the area under the receiver operating characteristic curve (AUC), in addition to accuracy, precision, recall and F1 score.

Results: The most predictive model for ploidy prediction had an AUC, accuracy, precision, recall and F1 score of 0.70, 0.64, 0.64, 0.50 and 0.56, respectively. The DNN-LSTM model showed the best predictive performance with an AUC of 0.78, accuracy of 0.77, precision of 0.79, recall of 0.86 and F1 score of 0.83. The predictive power was improved after the addition of clinical features for the algorithms in ploidy prediction and implantation prediction.

Conclusion: Our findings emphasize that clinical features can largely improve embryo prediction performance, and their combination with TLM parameters is robust to predict high-grade euploid blastocysts. The models for ploidy prediction, however, were not highly predictive, suggesting they cannot replace preimplantation genetic testing currently.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rbmo.2022.06.007DOI Listing

Publication Analysis

Top Keywords

clinical features
16
ploidy prediction
16
predict embryonic
8
embryonic ploidy
8
ploidy status
8
addition clinical
8
tlm parameters
8
high-grade euploid
8
preimplantation genetic
8
genetic testing
8

Similar Publications

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

Pericapsular nerve group cryoneurolysis as an option for palliative nonoperative management of hip fracture in a patient with end-stage medical comorbidities.

Can J Anaesth

January 2025

Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Health Services and Cumming School of Medicine, University of Calgary, South Health Campus, 4448 Front St. SE, Calgary, AB, T3M 1M4, Canada.

Purpose: We report the use of a pericapsular nerve group (PENG) cryoneurolysis for longer-term analgesia in a patient with a hip fracture and severe medical comorbidities as an alternative to hip fracture surgery.

Clinical Features: A frail but lucid and fully autonomous 97-yr-old female from an assisted living facility sustained a subcapital fracture of her right proximal femur following a ground level fall. She had significant comorbidities including end-stage respiratory disease.

View Article and Find Full Text PDF

Systematic Review of Hybrid Vision Transformer Architectures for Radiological Image Analysis.

J Imaging Inform Med

January 2025

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.

Vision transformer (ViT)and convolutional neural networks (CNNs) each possess distinct strengths in medical imaging: ViT excels in capturing long-range dependencies through self-attention, while CNNs are adept at extracting local features via spatial convolution filters. While ViT may struggle with capturing detailed local spatial information, critical for tasks like anomaly detection in medical imaging, shallow CNNs often fail to effectively abstract global context. This study aims to explore and evaluate hybrid architectures that integrate ViT and CNN to leverage their complementary strengths for enhanced performance in medical vision tasks, such as segmentation, classification, reconstruction, and prediction.

View Article and Find Full Text PDF

Objectives: To develop and validate a lesion-based grading system using clinicopathological and MRI features for predicting positive surgical margin (PSM) following robotic-assisted laparoscopic prostatectomy (RALP) among prostate cancer (PCa) patients.

Methods: Consecutive MRI examinations of patients undergoing RALP for PCa were retrospectively collected from two medical institutions. Patients from center 1 undergoing RALP between January 2020 and December 2021 were included in the derivation cohort and those between January 2022 and December 2022 were allocated to the validation cohort.

View Article and Find Full Text PDF

With the emergence of numerous classifications, surgical treatment for adolescent idiopathic scoliosis (AIS) can be guided more effectively. However, surgical decision-making and optimal strategies still lack standardization and personalized customization. Our study aims to devise proper deep learning (DL) models that incorporate key factors influencing surgical outcomes on the coronal plane in AIS patients to facilitate surgical decision-making and predict surgical results for AIS patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!