Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453051 | PMC |
http://dx.doi.org/10.1016/j.ihj.2022.07.004 | DOI Listing |
Transl Vis Sci Technol
January 2025
Institute of the Electrical and Biomedical Engineering, UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tyrol, Austria.
Purpose: To extract conjunctival bulbar redness from standardized high-resolution ocular surface photographs of a novel imaging system by implementing an image analysis pipeline.
Methods: Data from two trials (healthy; outgoing ophthalmic clinic) were collected, processed, and used to train a machine learning model for ocular surface segmentation. Various regions of interest were defined to globally and locally extract a redness biomarker based on color intensity.
J Med Syst
January 2025
Computer Science Institute, DISIT, University of Eastern Piedmont, Alessandria, Italy.
In traditional medical education, learners are mostly trained to diagnose and treat patients through supervised practice. Artificial Intelligence and simulation techniques can complement such an educational practice. In this paper, we present GLARE-Edu, an innovative system in which AI knowledge-based methodologies and simulation are exploited to train learners "how to act" on patients based on the evidence-based best practices provided by clinical practice guidelines.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Shanxi Cardiovascular Hospital, 18 Yifen Street, Taiyuan, 030024, Shanxi, China.
Amid an aging global population, heart failure has become a leading cause of hospitalization among older people. Its high prevalence and mortality rates underscore the importance of accurate mortality prediction for swift disease progression assessment and better patient outcomes. The evolution of artificial intelligence (AI) presents new avenues for predicting heart failure mortality.
View Article and Find Full Text PDFJ Am Med Inform Assoc
December 2024
Department of Radiology, Stanford University, Stanford, CA 94304, United States.
Objective: Brief hospital course (BHC) summaries are clinical documents that summarize a patient's hospital stay. While large language models (LLMs) depict remarkable capabilities in automating real-world tasks, their capabilities for healthcare applications such as synthesizing BHCs from clinical notes have not been shown. We introduce a novel preprocessed dataset, the MIMIC-IV-BHC, encapsulating clinical note and BHC pairs to adapt LLMs for BHC synthesis.
View Article and Find Full Text PDFEur Radiol
January 2025
Institute of PLA Geriatric Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
Objective: To establish morphological and radiomic models for early prediction of cognitive impairment associated with cerebrovascular disease (CI-CVD) in an elderly cohort based on cerebral magnetic resonance angiography (MRA).
Methods: One-hundred four patients with CI-CVD and 107 control subjects were retrospectively recruited from the 14-year elderly MRA cohort, and 63 subjects were enrolled for external validation. Automated quantitative analysis was applied to analyse the morphological features, including the stenosis score, length, relative length, twisted angle, and maximum deviation of cerebral arteries.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!