Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0272-6386(87)80080-x | DOI Listing |
J Lab Physicians
March 2023
Department of Microbiology, Peerless Hospitex Hospital and Research Center Ltd., Kolkata, West Bengal, India.
: Bloodstream infections (BSI) due to opportunistic microbes in the coronavirus disease 2019 (COVID-19) pandemic lead to high morbidity and mortality among hospitalized patients. Thus, it is vital to find out the risk factors of BSI and to learn the ways to mitigate it. : The aim of this study was to evaluate important risk factors of BSI due to opportunistic pathogens and to assess the role of the rigid infection control program to deal with this issue.
View Article and Find Full Text PDFPlants (Basel)
December 2022
Plant Genetics and Breeding Institute, Sahmyook University, Seoul 01795, Republic of Korea.
Mutation breeding has produced promising results, with exceptional attributes including pest/disease and environmental tolerance and desirable ornamental traits. Among the tools used in mutation breeding, chemical mutation is the most inexpensive way to develop novel plants. Succulents have gained popularity with high market demand because they require minimal watering and have plastic-like visuals.
View Article and Find Full Text PDFEnviron Sci Technol
July 2022
Department of Applied Geology, Aquatic Geochemistry and Hydrogeology, Institute of Geoscience, Kiel University, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany.
The effects of rising groundwater temperatures on zerovalent iron (ZVI)-based remediation techniques will be critical in accelerating chlorinated hydrocarbon (CHC) degradation and side reactions. Therefore, tetrachloroethylene (PCE) degradation with three ZVIs widely used in permeable reactive barriers (Gotthart-Maier cast iron [GM], Peerless cast iron [PL], and ISPAT sponge iron [IS]) was evaluated at 10-70 °C in deionized water. From 10 to 70 °C, PCE degradation half-lives decreased from 25 ± 2 to 0.
View Article and Find Full Text PDFEnviron Sci Technol
June 2021
Department of Applied Geology, Aquatic Geochemistry and Hydrogeology, Institute of Geoscience, Kiel University, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany.
Increasing groundwater temperatures caused by global warming, subsurface infrastructure, or heat storage projects may interfere with groundwater remediation techniques using zero-valent iron (ZVI) technology by accelerating anaerobic corrosion. The corrosion behavior of three ZVIs widely used in permeable reactive barriers (PRBs), Peerless cast iron (PL), Gotthart-Maier cast iron (GM), and an ISPAT iron sponge (IS), was investigated at temperatures between 25 and 70 °C in half-open batch reactors by measuring the volume of hydrogen gas generated. Initially, the corrosion rates of all tested ZVIs increased with temperature; at temperatures ≤40 °C, a material-specific steady state is reached, and at temperatures >40 °C, passivation causes a decrease in long-term corrosion rates.
View Article and Find Full Text PDFEnviron Sci Technol
April 2021
Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States.
Sulfur amendment of zerovalent iron (ZVI) materials has been shown to improve the reactivity and selectivity of ZVI toward a select group of organohalide contaminants in groundwater, most notably trichloroethene (TCE). In previous studies, chemical or mechanochemical sulfidation methods were used; however, the potential of using sulfate-reducing bacteria (SRB) to enable sulfur amendment has not been closely examined. In this study, lab-synthesized nanoscale ZVI (nZVI) and Peerless iron particles (ZVI) were treated in a sulfate-reducing monoculture () and an enrichment culture derived from freshwater sediments (AMR-1) prior to reactivity assessments with TCE as the model contaminant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!