A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication and characterization of biodegradable Zn-Cu-Mn alloy micro-tubes and vascular stents: Microstructure, texture, mechanical properties and corrosion behavior. | LitMetric

Fabrication and characterization of biodegradable Zn-Cu-Mn alloy micro-tubes and vascular stents: Microstructure, texture, mechanical properties and corrosion behavior.

Acta Biomater

National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Published: October 2022

Zinc (Zn) alloys are a promising biodegradable material for vascular stent applications. This study aimed to fabricate biodegradable Zn-2.0Cu-0.5Mn alloy micro-tubes and vascular stents with high dimensional accuracy and suitable mechanical properties, and to investigate their microstructure, texture, mechanical properties and corrosion behavior. The micro-tubes and vascular stents were successfully fabricated by a combined process of extrusion, drawing, laser cutting and electrochemical polishing. The microstructures of as-extruded and as-drawn micro-tubes consisted of Zn matrix with near-equiaxed grains (average grain size: ∼2 µm) and second phases of ε (CuZn) and MnZn with different sizes. The texture evolved from basal planes approximately paralleling to deformation direction for as-extruded micro-tube to approximately perpendicular to deformation direction for as-drawn micro-tube, because predominant deformation mechanisms changed from basal dislocation slip during tube extrusion to prismatic dislocation, pyramidal dislocations, and {101¯2} twins during tube drawing. As-drawn micro-tube exhibited suitable mechanical properties with an ultimate tensile strength of about 298 MPa and elongation of about 26% as a stent material. Moreover, the processed stent with a thickness of about 125 µm possessed sufficient radial strength of about 150 kPa and good balloon expandability. In addition, as-drawn tube exhibited an in vitro corrosion rate of about 158 µm/year with a basically uniform corrosion morphology. These results indicated that biodegradable Zn-2.0Cu-0.5Mn alloy is a promising vascular stent material candidate, and the procedure for processing the micro-tube and stent is practical and effective. STATEMENT OF SIGNIFICANCE: Fabrication of micro-tubes followed by laser cutting and polishing is a common way to prepare metallic vascular stents. However, it is quite challenging to fabricate Zn-based stents using this standard method, and there is a lack of studies reporting processing details in the past. Biodegradable Zn-2.0Cu-0.5Mn alloy micro-tubes and vascular stents with high dimensional accuracy and suitable mechanical properties were successfully fabricated by a combined process in this study. As-drawn micro-tube exhibited an ultimate tensile strength of about 298 MPa and elongation of about 26%. The stent possessed sufficient radial strength of about 150 kPa and good balloon expandability. We demonstrated a practical method to fabricate biodegradable Zn-based micro-tubes and stents with high dimensional accuracy and mechanical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.07.049DOI Listing

Publication Analysis

Top Keywords

mechanical properties
24
vascular stents
20
micro-tubes vascular
16
alloy micro-tubes
12
biodegradable zn-20cu-05mn
12
zn-20cu-05mn alloy
12
stents high
12
high dimensional
12
dimensional accuracy
12
suitable mechanical
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!