A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

VCAM-1-binding peptide targeted cationic liposomes containing NLRP3 siRNA to modulate LDL transcytosis as a novel therapy for experimental atherosclerosis. | LitMetric

VCAM-1-binding peptide targeted cationic liposomes containing NLRP3 siRNA to modulate LDL transcytosis as a novel therapy for experimental atherosclerosis.

Metabolism

Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China; Department of Pharmacology, the Key Laboratory of Drug Target Researches and Pharmacodynamics Evaluation of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China. Electronic address:

Published: October 2022

Background: Activation of NLRP3 inflammasome accelerates the formation of atherosclerotic plaques. Here, we evaluated the effects of inflammation on the expression of the NLRP3 inflammasome in endothelial cells (ECs).

Methods: The effect of TNF-α on transcytosis of LDL was measured. VCAM-1 binding peptide targeting cationic liposomes (PCLs) were prepared as siRNA vectors. Methylated NLRP3 siRNA was encapsulated into the PCLs to knock down NLRP3 in vitro and in vivo. In rats with partial carotid ligation, TNF-α-induced LDL retention in the carotid artery endothelium was observed. In ApoE mice, NLRP3 siRNA-PCLs were injected intravenously to observe their effect on the formation of atherosclerosis.

Results: Our results showed that TNF-α upregulated NLRP3 in ECs, promoting the assembly of the NLRP3 inflammasome and processing of pro-IL-1β into IL-1β. Moreover, TNF-α accelerated LDL transcytosis in ECs. Knockdown of NLRP3 prevented TNF-α-induced NLPR3 inflammasome/IL-1β signaling and LDL transcytosis. Using optimized cationic liposomes to encapsulate methylated NLRP3 siRNA, resulting in targeting of VCAM-1-expressing ECs, to knockdown NLRP3, TNF-α-induced NLRP3 inflammasome activation and LDL transcytosis were prevented. Using the partial carotid ligation as an atherosclerosis rat model, we found that local administration of NLRP3 siRNA-PCLs efficiently knocked down NLPR3 expression in the carotid endothelium and dramatically attenuated the deposition of atherogenic LDL in carotid ECs in TNF-α-challenged rats. Furthermore, NLRP3 siRNA-PCLs were injected intravenously in ApoE mice, resulting in reduced plaque formation.

Conclusion: These findings established a novel strategy for targeting the NLRP3 inflammasome using NLRP3 siRNA-PCLs to interrupt LDL transcytosis, representing a potential novel therapy for atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2022.155274DOI Listing

Publication Analysis

Top Keywords

ldl transcytosis
20
nlrp3 inflammasome
20
nlrp3
16
nlrp3 sirna-pcls
16
cationic liposomes
12
nlrp3 sirna
12
ldl
8
novel therapy
8
methylated nlrp3
8
partial carotid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!