Small cell lung cancer (SCLC) is treated as a monolithic disease despite the evident intra- and intertumoral heterogeneity. Non-specific DNA-damaging agents have remained the first-line treatment for decades. Recently, emerging transcriptomic and genomic profiling of SCLC tumors identified distinct SCLC subtypes and vulnerabilities towards targeted therapeutics, including inhibitors of the nuclear enzyme poly (ADP-ribose) polymerase (PARPi). SCLC cell lines and tumors exhibited an elevated level of PARP1 protein and mRNA compared to healthy lung tissues and other subtypes of lung tumors. Notable responses to PARPi were also observed in preclinical SCLC models. Clinically, PARPi monotherapy exerted variable benefits for SCLC patients. To date, research is being vigorously conducted to examine predictive biomarkers of PARPi response and various PARPi combination strategies to maximize the clinical utility of PARPi. This narrative review summarizes existing preclinical evidence supporting PARPi monotherapy, combination therapy, and respective translation to the clinic. Specifically, we covered the combination of PARPi with DNA-damaging chemotherapy (cisplatin, etoposide, temozolomide), thoracic radiotherapy, immunotherapy (immune checkpoint inhibitors), and many other novel therapeutic agents that target DNA damage response, tumor microenvironment, epigenetic modulation, angiogenesis, the ubiquitin-proteasome system, or autophagy. Putative biomarkers, such as SLFN11 expression, MGMT methylation, E2F1 expression, and platinum sensitivity, which may be predictive of response to distinct therapeutic combinations, were also discussed. The future of SCLC treatment is undergoing rapid change with a focus on tailored and personalized treatment strategies. Further development of cancer therapy with PARPi will immensely benefit at least a subset of biomarker-defined SCLC patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.semcancer.2022.07.008 | DOI Listing |
Int J Mol Sci
January 2025
Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
Hepatocellular carcinoma (HCC) cells critically depend on PARP1 and CHK1 activation for survival. Combining the PARP inhibitor (PARPi) olaparib with a CHK1 inhibitor (MK-8776, CHK1i) produced a synergistic effect, reducing cell viability and inducing marked oxidative stress and DNA damage, particularly in the HepG2 cells. This dual treatment significantly increased apoptosis markers, including γH2AX and caspase-3/7 activity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland.
Epithelial ovarian cancer (EOC) remains a leading cause of gynecologic cancer mortality. Despite advances in treatment, metastatic progression and resistance to standard therapies significantly worsen patient outcomes. Epithelial-mesenchymal transition (EMT) is a critical process in metastasis, enabling cancer cells to gain invasive and migratory capabilities, often driven by changing miRNA expression involved in the regulation of pathological processes like drug resistance.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Regenerative NanoMedicine, Centre de Recherche en Biomédecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), UMR_S U1260 INSERM and University of Strasbourg, 67085 Strasbourg, France.
Prostate cancer is one of the most common diseases among men worldwide and continues to pose a serious threat to health. This review shows the history and the new developments in the management of prostate cancer, with an emphasis on a range of therapeutic approaches, such as hormone therapy, radiation therapy, surgery, and innovative targeted therapeutics. The evolution of these treatments is examined in light of clinical outcomes, patient quality of life, and emerging resistance mechanisms, such as the recently shown vitamin D-based strategies.
View Article and Find Full Text PDFTarget Oncol
January 2025
Pharmacy Service, H. Móstoles, Madrid, Spain.
Background: The reported benefit of poly (ADP-ribose) polymerase inhibitor (PARPi) maintenance in patients with newly diagnosed and platinum (Pt)-sensitive recurrent ovarian cancer (OC) included in randomized clinical trials needs to be corroborated in a less selected population.
Objective: The aim is to increase the evidence on niraparib in a real-world setting.
Methods: This is a retrospective observational study including women with platinum-sensitive relapsed high-grade serous OC who started niraparib maintenance between August 2019 (marketing data, Spain) and May 2022.
Eur Urol
January 2025
Department of Oncology, City of Hope Cancer Center, Goodyear, AZ, USA.
Background And Objective: Selection of patients harboring mutations in homologous recombination repair (HRR) genes for treatment with a PARP inhibitor (PARPi) is challenging in metastatic castration-resistant prostate cancer (mCRPC). To gain further insight, we quantitatively assessed the differential efficacy of PARPi therapy among patients with mCRPC and different HRR gene mutations.
Methods: This living meta-analysis (LMA) was conducted using the Living Interactive Evidence synthesis framework.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!