Engineering a Feruloyl-Coenzyme A Synthase for Bioconversion of Phenylpropanoid Acids into High-Value Aromatic Aldehydes.

J Agric Food Chem

The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P.R. China.

Published: August 2022

Aromatic aldehydes find extensive applications in food, perfume, pharmaceutical, and chemical industries. However, a limited natural enzyme selectivity has become the bottleneck of bioconversion of aromatic aldehydes from natural phenylpropanoid acids. Here, based on the original structure of feruloyl-coenzyme A (CoA) synthetase (FCS) from sp. V-1, we engineered five substrate-binding domains to match specific phenylpropanoid acids. FcsCIA, FcsMA, FcsHA, FcsCA, and FcsFA showed 9.96-, 10.58-, 4.25-, 6.49-, and 8.71-fold enhanced catalytic efficiency for degrading CoA thioesters of cinnamic acid, 4-methoxycinnamic acid, 4-hydroxycinnamic acid, caffeic acid, and ferulic acid, respectively. Molecular dynamics simulation illustrated that novel substrate-binding domains formed strong interaction forces with substrates' methoxy/hydroxyl group and provided hydrophobic/alkaline catalytic surfaces. Five recombinant with FCS mutants were constructed with the maximum benzaldehyde, p-anisaldehyde, p-hydroxybenzaldehyde, protocatechualdehyde, and vanillin productivity of 6.2 ± 0.3, 5.1 ± 0.23, 4.1 ± 0.25, 7.1 ± 0.3, and 8.7 ± 0.2 mM/h, respectively. Hence, our study provided novel and efficient enzymes for the bioconversion of phenylpropanoid acids into aromatic aldehydes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.2c02980DOI Listing

Publication Analysis

Top Keywords

phenylpropanoid acids
16
aromatic aldehydes
16
bioconversion phenylpropanoid
8
substrate-binding domains
8
acid
5
engineering feruloyl-coenzyme
4
feruloyl-coenzyme synthase
4
synthase bioconversion
4
phenylpropanoid
4
acids
4

Similar Publications

[The many ways flowers send signals to pollinators].

Biol Aujourdhui

January 2025

Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.

The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.

View Article and Find Full Text PDF

Faba bean ( L.) is a valuable ingredient in plant-based foods such as meat and dairy analogues. However, its typical taste and aroma are considered off-flavours in these food applications, representing a bottleneck during processing.

View Article and Find Full Text PDF

Integrated Physiological, Transcriptomic and Metabolomic Analyses of the Response of Rice to Aniline Toxicity.

Int J Mol Sci

January 2025

Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1, Shida Road, Limin Economic and Technological Development Zone, Harbin 150025, China.

The accumulation of aniline in the natural environment poses a potential threat to crops, and thus, investigating the effects of aniline on plants holds practical implications for agricultural engineering and its affiliated industries. This study combined physiological, transcriptomic, and metabolomic methods to investigate the growth status and molecular-level response mechanisms of rice under stress from varying concentrations of aniline. At a concentration of 1 mg/L, aniline exhibited a slight growth-promoting effect on rice.

View Article and Find Full Text PDF

, commonly referred to as tartary buckwheat, is a cultivated medicinal and edible crop renowned for its economic and nutritional significance. Following the publication of the buckwheat genome, research on its functional genomics across various growth environments has gradually begun. Auxin plays a crucial role in many life processes.

View Article and Find Full Text PDF

The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals.

Antioxidants (Basel)

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.

Plants have evolved complex mechanisms to cope with diverse abiotic stresses, with the phenylpropanoid pathway playing a central role in stress adaptation. This pathway produces an array of secondary metabolites, particularly polyphenols, which serve multiple functions in plant growth, development, regulating cellular processes, and stress responses. Recent advances in understanding the molecular mechanisms underlying phenylpropanoid metabolism have revealed complex regulatory networks involving MYB transcription factors as master regulators and their interactions with stress signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!