A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Time-Dependent Studies of Oxaliplatin and Other Nucleolar Stress-Inducing Pt(II) Derivatives. | LitMetric

The properties of small molecule Pt(II) compounds that drive specific cellular responses are of interest due to their broad clinical use as chemotherapeutics as well as to provide a better mechanistic understanding of bioinorganic processes. The chemotherapeutic compound cisplatin causes cell death through DNA damage, while oxaliplatin may induce cell death through inhibition of ribosome biogenesis, also referred to as nucleolar stress induction. Previous work has found a subset of oxaliplatin derivatives that cause nucleolar stress at 24 h drug treatment. Here we report that these different Pt(II) derivatives exhibit a range of rates and degrees of global nucleolar stress induction as well as inhibition of rRNA transcription. Potential explanations for these variations include both the ring size and stereochemistry of the non-aquation-labile ligand. We observe that Pt(II) compounds containing a 6-membered ring show faster onset and a higher overall degree of nucleolar stress than those containing a 5-membered ring, and that compounds having the 1,2-stereoisomeric conformation show faster onset and a higher overall degree of stress than those having the 1,2-conformation. Pt(II) cellular accumulation and cellular Pt(II)-DNA adduct formation did not correlate with nucleolar stress induction, indicating that the effect is not due to global interactions. Together these results suggest that Pt(II) compounds induce nucleolar stress through a mechanism that likely involves one or a few key intermolecular interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.2c00399DOI Listing

Publication Analysis

Top Keywords

nucleolar stress
24
ptii compounds
12
stress induction
12
ptii derivatives
8
cell death
8
faster onset
8
onset higher
8
higher degree
8
nucleolar
7
stress
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!