Quality of Cure in Depth of Commercially Available Bulk-fill Composites: A Layer-by-layer Mechanical and Biological Evaluation.

Oper Dent

Julian G. Leprince, Adult and Child Dentistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium; DRIM Research Group & Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium.

Published: July 2022

Despite their popularity, the use of bulk-fill composites remains controversial, both in terms of their properties and their in-depth development. The objectives of the present work were (1) to provide a more comprehensive evaluation of the quality of cure in depth of commercially available bulk-fill composites by combining various key mechanical and biological characterization methods, (2) to evaluate the inter-material differences when optimally cured, and (3) to evaluate the efficiency of an antioxidant-N-acetyl-cysteine (NAC)-to restrain the adverse effects of the leached components on cell viability. Nine bulk-fill composites (including flowable and high-viscosity materials) were investigated and compared to two conventional resin-based composites, one flowable and one high-viscosity restorative material. The materials were injected or packed into Teflon molds of various configurations, up to 6 mm material thickness. They were then light-cured from the top for 20 seconds with Bluephase G2 (Ivoclar Vivadent, irradiance = 1050 mW/cm2). The following physico-mechanical properties were measured for the upper (0-2 mm), intermediate (2-4 mm), and lower (4-6 mm) layers: degree of conversion using Raman Spectrometry (DC, in %), microhardness using a Vickers micro-indenter before (VHN dry) and after 24 hours of storage in ethanol (VHN EtOH), and flexural strength (in MPa) and flexural modulus (in GPa) using a three-point bend test. Each composite layer and an uncured layer were also stored for one week in a standard cell growth medium to generate conditioned media. Human dental pulp cells were then cultured for 24 hours with the latter and cell viability was measured using an MTS assay. A similar experiment was repeated with conditioned media produced in contact with uncured composites, with and without the addition of 4 mM NAC. The data were subjected to a Shapiro-Wilk test, then one-way ANOVA or Kruskal-Wallis test, followed either by Tukey's test (inter-material comparison) or by Dunnett's or Dunn's test (comparison between layers relative to the upper one). The level of statistical significance was set at 0.05. Some materials (EverX, X-traF, VenusBF, X-traB) did not show any significant differences (p>0.05) for any of the properties considered between the intermediate layers compared to the upper one (considered as reference). Others displayed significant differences, at least for some properties, highlighting the value of combining various key mechanical and biological characterization methods when investigating the quality of cure in depth. Significant inter-material differences (p<0.05) were observed when comparing the properties of their upper layer, considered as "optimally" polymerized. Hence, one needs to consider the absolute property values, not only their relative evolution concerning layer thickness. Finally, the use of NAC appeared as beneficial to reduce the risk of harmful effects to dental pulp cells, especially in case of excessive thickness use, and may therefore be of potential interest as an additive to composites in the future.

Download full-text PDF

Source
http://dx.doi.org/10.2341/21-084-LDOI Listing

Publication Analysis

Top Keywords

bulk-fill composites
16
quality cure
12
cure depth
12
mechanical biological
12
depth commercially
8
commercially bulk-fill
8
combining key
8
key mechanical
8
biological characterization
8
characterization methods
8

Similar Publications

Objective: To investigate the effects of bulk-fill, resin-based composite types (high or low viscosity) on the internal adaptation of Class V restorations.

Study Design: Experimental study. Place and Duration of the Study: Hefei Stomatological Hospital, Hefei, China, from October 2022 to December 2023.

View Article and Find Full Text PDF

This study assessed the effect of composite resins, aggregated or not with S-PRG particles, and the use of toothpaste in controlling demineralization and bacterial growth. Human molars were distributed into 3 groups: control (CT) - sound teeth, Beautifil Bulk Restorative System (aggregated with S-PRG) (BB), Filtek One Bulk Fill (without S-PRG) (FB). Teeth destined for groups BB and FB previously received Class I preparations (4 × 4 × 4 mm), followed by single-increment restorations.

View Article and Find Full Text PDF

Objective: This in vitro study aimed to investigate the effect of five polishing systems on the surface roughness (SR) and color change (CC) of novel bulk-fill composite resins.

Methods: Fifty composite resin samples were prepared for each of the five groups: Stark Bulk Fill, SDR Plus, SonicFill 3, Charisma Bulk Flow One, and Filtek Z250. Each group of composite resins was further subdivided into five subgroups based on the polishing method applied: OptraGloss (OG), OptraGloss combined with Diapolisher paste (OG), OptiDisc (OD), OptiDisc combined with Diapolisher paste (OD), and Occlubrush (OCC) (n = 10).

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the in vitro effects of coffee exposure on the color and roughness of conventional and bulk-fill resin composites, with and without surface pre-reacted glass-ionomer (S-PRG) filler.

Methodology: Forty-eight cylindrical samples (Ø6 mm × 2 mm) were prepared and categorized as follows (n = 12 per group): conventional nano-hybrid (Tetric N-Ceram, Ivoclar); nano-hybrid with S-PRG filler (Beautifil II, Shofu); bulk-fill (Tetric N-Ceram Bulk Fill, Ivoclar); and bulk-fill with S-PRG filler (Beautifil Bulk Restorative, Shofu). The samples were assessed for surface roughness (Ra, μm), color coordinates (CIE Lb), and overall color change (ΔE, ΔE).

View Article and Find Full Text PDF

Adhesive damage of class V restorations under shrinkage stress and occlusal forces using cohesive zone modeling.

J Mech Behav Biomed Mater

January 2025

Key Lab for Biomechanical Engineering of Sichuan Province, Sichuan University, Chengdu, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin, China. Electronic address:

Objective: This study aims to investigate adhesive damage caused by the synergistic effects of polymerization shrinkage and occlusal forces via finite element analysis (FEA), based on damage mechanics with the cohesive zone model (CZM). The objective is to obtain the adhesive damage distribution and investigate how the material properties of resin composite impact adhesive damage.

Methods: A 3D reconstruction model of an mandibular first molar was constructed through CBCT imaging, and a Class V cavity was prepared using computer-aided engineering (CAE) software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!