This review focuses on the mechanisms of transcriptional control of an important multidrug efflux pump system (MtrCDE) possessed by , the aetiological agent of the sexually transmitted infection termed gonorrhoea. The operon that encodes this tripartite protein efflux pump is subject to both - and -acting transcriptional factors that negatively or positively influence expression. Critically, levels of MtrCDE can influence levels of gonococcal susceptibility to classical antibiotics, host-derived antimicrobials and various biocides. The regulatory systems that control can have profound influences on the capacity of gonococci to resist current and past antibiotic therapy regimens as well as virulence. The emergence, mechanisms of action and clinical significance of the transcriptional regulatory systems that impact expression in gonococci are reviewed here with the aim of linking bacterial antimicrobial resistance with multidrug efflux capability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235802 | PMC |
http://dx.doi.org/10.1099/mic.0.001231 | DOI Listing |
NPJ Antimicrob Resist
August 2024
Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
Multidrug efflux pumps have been found to play a crucial role in drug resistance in bacteria and eukaryotes. In this study, we investigated the presence of functional multidrug and toxic compound extrusion (MATE) efflux pumps, inferred from whole genome sequencing, in the halophilic archaeon Halorubrum amylolyticum CSM52 using Hoechst 33342 dye accumulation and antimicrobial sensitivity tests in the presence and absence of efflux pump inhibitors (EPIs). The whole genome sequence of H.
View Article and Find Full Text PDFNPJ Antimicrob Resist
March 2024
Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
Gram-negative bacteria cause the majority of critically drug-resistant infections, necessitating the rapid development of new drugs with Gram-negative activity. However, drug design is hampered by the low permeability of the Gram-negative cell envelope and the function of drug efflux pumps, which extrude foreign molecules from the cell. A better understanding of the molecular determinants of compound recognition by efflux pumps is, therefore, essential.
View Article and Find Full Text PDFChemMedChem
January 2025
University of Perugia: Universita degli Studi di Perugia, Department of Pharmaceutical Sciences, ITALY.
In this study, we analyzed publicly accessible data related to the Staphylococcus aureus NorA protein, a well-known efflux pump involved in antimicrobial resistance. Our analysis revealed several inconsistencies in data annotation, and significant issues concerning the homogeneity across datasets, which compromise the reliability of data-driven approaches aimed at identifying novel Staphylococcus aureus NorA efflux pump inhibitors (EPIs). To address these challenges, we propose a standardized pipeline for experimental procedures and data annotation, designed to enhance the consistency and quality of EPI datasets submitted to repositories, thereby increasing the utility of publicly available datasets for the discovery of potential EPIs.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
Tigecycline (Tgc), a third-generation tetracycline is found as the last line of defense against multi-drug resistant bacteria. Recent increased rate of resistance to tgc, a human-restricted agent among animal bacteria poses a significant global health challenge. Overuse of first generation tetracyclines (Tet) and phenicols in animals have been suggested to be associated with Tgc resistance development.
View Article and Find Full Text PDFRSC Med Chem
December 2024
Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India
Nitrofuran and pyrazolopyrimidine-based compounds possess a broad antimicrobial spectrum including Gram-positive and Gram-negative bacteria. In the present work, a series of conjugates of these scaffolds was synthesized and evaluated for antimicrobial activity against and methicillin-resistant (MRSA). Many compounds showed MIC values of ≤2 μg ml, with compound 35 demonstrating excellent activity (MICs: 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!