The complete mechanism of an aldol condensation in water.

Phys Chem Chem Phys

Dept. of Chemistry & Biochemistry, Univ. Calif. San Diego, La Jolla, CA, 92093-0358, USA.

Published: August 2022

The base-catalyzed aldol condensation between benzaldehyde and -acetylbenzoic acid in water shows an inverse solvent kinetic isotope effect, /, of 1.33 ± 0.03. The reaction is definitely faster in DO. This is interpreted to mean that the rate-limiting step in a five-step mechanism is Step 5, the final elimination of hydroxide from the enolate intermediate, not the formation of that intermediate. This is the same result and the same conclusion as from earlier studies in aqueous acetonitrile and refutes a suggestion, based on computations, that the rate-limiting step would change in water. Those computations are criticized as implying impossibly large isotope effects.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp02095eDOI Listing

Publication Analysis

Top Keywords

aldol condensation
8
rate-limiting step
8
complete mechanism
4
mechanism aldol
4
condensation water
4
water base-catalyzed
4
base-catalyzed aldol
4
condensation benzaldehyde
4
benzaldehyde -acetylbenzoic
4
-acetylbenzoic acid
4

Similar Publications

Dual Activation Modes Enable Bifunctional Catalysis of Aldol Reactions by Flexible Dihydrazides.

J Am Chem Soc

January 2025

Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.

Hydrazides are known to catalyze reactions of α,β-unsaturated aldehydes via transient iminium formation. The iminium intermediate displays enhanced electrophilicity, which facilitates conjugate additions and cycloadditions. We observed that a hydrazide embedded in a seven-membered ring catalyzes homoaldol condensation of a simple aldehyde in a process that displays an approximate second-order dependence on the hydrazide.

View Article and Find Full Text PDF

Structural snapshots of the aldol condensation reaction of the enzyme trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from Pseudomonas fluorescens N3.

Biochem Biophys Res Commun

December 2024

Biophysics Institute, CNR-IBF, Via Corti 12, I-20133, Milano, Italy; Department of Bioscience, University of Milan, Via Celoria 26, I-20133, Milano, Italy. Electronic address:

Aldolases are crucial enzymes that catalyze the formation of carbon-carbon bonds in the context of the anabolic and catabolic pathways of various metabolites. The bacterium Pseudomonas fluorescens N3 can use naphthalene as its sole carbon and energy source by using, among other enzymes, the trans-o-hydroxybenzylidenepyruvate (tHBP) hydratase-aldolase (HA), encoded by the nahE gene. In this study, we present the crystallographic structures of tHBP-HA in three different functional states: the apo enzyme with a phosphate ion in the active site, and the Schiff base adduct bound either to pyruvate or to the substitute with '(R)-4-hydroxy-4-(2-hydroxyphenyl)-2-oxobutanoate'(intermediate state).

View Article and Find Full Text PDF

Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas.

View Article and Find Full Text PDF

Designing and realizing new topologies represent one of the most important ways toward developing new structures and functionalities for molecule-based frameworks including SOFs, MOFs, and COFs. Herein, Aldol condensation between 5,10,15,20-tetrayl(tetrakis(([1,1':3',1''-terphenyl]-4,4''-dicarbaldehyde)))-porphyrin (TTEP) and 2,4,6-trimethyl-1,3,5-triazine (TMT) affords the vinylene-linked 3D covalent organic framework Por-COF-cya. Powder X-ray diffraction (PXRD) in combination with structural simulation reveals its high crystalline structure with an unprecedented cya topology in the molecule-based frameworks reported thus far.

View Article and Find Full Text PDF

Synthesis and LDHA Inhibitory Activity of New Stiripentol-Related Compounds of Potential Use in Primary Hyperoxaluria.

Int J Mol Sci

December 2024

Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain.

Human lactate dehydrogenase A (LDHA) is a homotetrameric isozyme involved in the conversion of glyoxylate into oxalate in the cytosol of liver cells (hepatocytes) and partially responsible for the overproduction of oxalate in patients with the rare disease called primary hyperoxaluria (PH). Recently, LDHA inhibition has been validated as a safe therapeutic method to try to control the PH disease. Stiripentol (STP) is an approved drug used in the treatment of seizures associated with Dravet's syndrome (a severe form of epilepsy in infancy) which, in addition, has been drawing interest in recent years also for potentially treating PH, due to its LDHA inhibitory activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!