A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanistic Approach to Reveal Interaction of Uranyl Ions in Alkyltriphenylphosphonium Bromide-Based Deep Eutectic Solvent. | LitMetric

Speciation is known to control fundamental aspects of metal processing and electrochemical behavior such as solubility and redox potentials. Deep eutectic solvents (DESs) are an emerging class of green, low-cost and designer solvents and are being explored as alternatives for recycling nuclear fuel and critical materials. However, there is a lack of knowledge about the behavior of metals in them. Here, for the first time, we synthesized three new DESs based on alkyltriphenylphosphonium bromide (CPPh3Br), with varied alkyl chain lengths (), as the hydrogen-bond acceptor along with decanoic acid (DA) as the hydrogen-bond donor and explored the redox speciation of uranyl nitrate. The changes in the Fourier transform infrared and NMR spectra helped elucidate the formation of hydrogen bonds in DES. The absorption maxima of uranyl in DES was red-shifted by 10 nm compared to the free uranyl, with concomitant increase in intensity and luminescence lifetime, which suggested a strong interaction of uranyl nitrate with DES. Cyclic voltammetry was probed to understand the redox thermodynamics, transport properties, and heterogeneous electron transfer kinetics of the irreversible electron transfer of uranyl ions in the three DESs. Electrochemical and spectroscopic techniques together with density functional theory calculations unlocked microscopic insights into the solvation and speciation of UO ions in three DESs and also the associated unusual trends observed in the physical properties of the DESs. The hydrogen-bonded structure of DES plays a crucial role in the redox behavior of the UO ion due to its strong potent complexation with its components. The basic findings of the present work can have far-reaching consequences for the extraction, electrochemical separation, and future development of redox-based separation processes in the nuclear fuel cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.2c01547DOI Listing

Publication Analysis

Top Keywords

three dess
12
interaction uranyl
8
uranyl ions
8
deep eutectic
8
nuclear fuel
8
uranyl nitrate
8
electron transfer
8
ions three
8
uranyl
6
dess
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!