Electrochemical CO reduction is an appealing approach to diminish CO emissions, while obtaining valuable chemicals and fuels from renewable electricity. However, efficient electrocatalysts exhibiting high selectivity and low operating potentials are still needed. Herein it is reported that Cu and Fe nanoparticles supported on porous N-doped graphitic carbon matrix are efficient and selective electrocatalysts for CO reduction to CO at low overpotentials. XRD and Raman spectroscopy confirmed independent Cu and Fe metals as the main phases. HRSEM and HRTEM images show the coral-like morphology of the porous N-doped graphitic carbon matrix supporting Cu and Fe metal nanoparticles (about 10 wt%) homogeneously distributed with an average size of 1.5 nm and narrow size distribution. At the optimum Fe/Cu ratio of 2, this material present high activity for CO reduction to CO at -0.3 V RHE with a faradaic efficiency of 96%. Moreover, at -0.5 V RHE this electrocatalyst produces 27.8 mmol of CO g h, the production rate being stable for 17 h. A synergy between Cu and Fe nanoparticles due to their close proximity in comparison with independent Cu or Fe electrocatalysts was observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr02523j | DOI Listing |
J Chromatogr A
January 2025
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, PR China. Electronic address:
Organophosphorus pesticides (OPPs) severely pollute various environmental water due to their excessive use, and it is extremely urgent to develop novel adsorbents with high adsorption capacities, rapid removal rate and easily recovery for the removal of OPPs. In this study, defect-rich Co/N-doped hierarchically porous carbons (Co/N-DHPCs) were constructed by pyrolyzing acid-etched ZIF-67 precursor. The developed Co/N-DHPCs possessed rich defects, well-developed hierarchical porous structure, high specific surface area and excellent magnetic property, and exhibited large adsorption capacities of 103.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing.
View Article and Find Full Text PDFJ Pharm Anal
October 2024
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
The overuse of antibiotics has led to the severe contamination of water bodies, posing a considerable hazard to human health. Therefore, the development of an accurate and rapid point-of-care testing (POCT) platform for the quantitative detection of antibiotics is necessary. In this study, Cerium oxide (CeO) and Ferrosoferric oxide (FeO) nanoparticles were simultaneously encapsulated into N-doped nanofibrous carbon microspheres to form of a novel nanozyme (CeFe-NCMzyme) with a porous structure, high surface area, and N-doped carbon material properties, leading to a considerable enhancement of the peroxidase (POD)-like activity compared with that of the CeO or FeO nanoparticles alone.
View Article and Find Full Text PDFChemistry
January 2025
Yangzhou University, School of Chemistry and Chemical Engineering, CHINA.
Designing transition metal oxide (TMO)/porous carbon composite materials for the oxygen reduction reaction (ORR) is a promising strategy in high-performance fuel cell technology. In this study, we used the isolation effect and pore-creating properties of Zn2+ to fabricate a composite material comprising ultrasmall Fe3O4 particles anchored on hierarchically N-doped porous carbon nanospheres. This material, referred to as CPZ1.
View Article and Find Full Text PDFEnviron Res
January 2025
Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, MS, 79804-970, Brazil. Electronic address:
Transforming lignocellulosic biomass waste into value-added materials like porous carbons offers a sustainable and increasingly important solution for its efficient management within a circular economy framework. Although the heteroatom-doping process enhances oxygen- or nitrogen-containing functionalities on porous carbons, it often leads to losses in structural integrity and other key functionalities. This study presents a novel protocol to produce N-doped porous carbons that efficiently introduces nitrogen groups while improving surface area, microporosity definition and the concentration of oxygen-containing functionalities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!