Objectives: As evidence mounts supporting the utility of pharmacogenomic-guided medication management, incorporating pharmacogenomic genes into secondary finding results from sequencing panels is increasingly under consideration. We studied medical geneticists' attitudes on receiving pharmacogenomic results as secondary finding.
Methods: Four focus groups with 16 medical geneticists total were conducted followed by thematic analysis.
Results: All participants ordered genetic sequencing tests; however, the majority had rarely or never ordered pharmacogenomic tests (10/16) or prescribed medications with established response variability (11/16). In total 81.3% expressed low comfort interpreting pharmacogenomic results without appropriate clinical resources (13/16). The positives of receiving pharmacogenomic results as secondary finding included prevention of adverse drug reactions in adults, grateful information-seeking patients, the ability to rapidly prescribe more effective treatments and appreciation of the recent advances in both pharmacogenomic knowledge and available guidelines. Negatives included laboratory reporting issues, exclusivity of pharmacogenomic results to certain populations, lengthy reports concealing pharmacogenomic results in patient charts and laboratories marketing to individuals without prior pharmacogenomic knowledge or targeting inappropriate populations. The most desirable pharmacogenomic resources included a universal electronic health record clinical decision support tool to assist identifying and implementing pharmacogenomic results, a specialized pharmacist as part of the care team, additional pharmacogenomic training during medical/graduate school, and a succinct interpretation of pharmacogenomic results included on laboratory reports.
Conclusions: The majority of participants agreed that adding certain actionable pharmacogenomic genes to the American College of Medical Genetics and Genomics SF list is reasonable; however, this was qualified with a need for additional resources to support implementation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FPC.0000000000000479 | DOI Listing |
Nicotine Tob Res
January 2025
Department of Population Health Sciences, University of Leicester, Leicester, UK.
Introduction: Varenicline is an α4β2 nicotinic acetylcholine receptor partial agonist with the highest therapeutic efficacy of any pharmacological smoking cessation aid and a 12-month cessation rate of 26%. Genetic variation may be associated with varenicline response, but to date no genome-wide association studies of varenicline response have been published.
Methods: In this study, we investigated the genetic contribution to varenicline effectiveness using two electronic health record-derived phenotypes.
J Appl Genet
January 2025
Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
Gilles de la Tourette syndrome (GTS) and other tic disorders (TDs) have a substantial genetic component with their heritability estimated at between 60 and 80%. Here we propose an oligogenic risk score of TDs using whole-genome sequencing (WGS) data from a group of Polish GTS patients, their families, and control samples (n = 278). In this study, we first reviewed the literature to obtain a preliminary list of 84 GTS/TD candidate genes.
View Article and Find Full Text PDFExpert Opin Drug Metab Toxicol
January 2025
Institute of Psychology, University of Innsbruck, Austria.
Introduction: The prevalence of polypharmacy and the increasing availability of pharmacogenetic information in clinical practice have raised the prospect of data-driven clinical decision making when addressing the issues of drug-drug interactions and genetic polymorphisms in metabolizing enzymes. Inhibition of metabolizing enzymes in drug interactions can lead to genotype-phenotype discrepancies (phenoconversion) that reduce the relevance of individual pharmacogenetic information.
Areas Covered: The aim of this review is to provide an overview on existing models of phenoconversion and we discuss how phenoconversion models may be developed to estimate joint drug-interactions and genetic effects.
Clin Pharmacol Ther
January 2025
Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Pharmacogenetic testing can prevent severe toxicities from several oncology drug therapies; it also has the potential to improve the outcomes from supportive care drugs. Paired tumor and germline sequencing is increasingly common in oncology practice; these include sequencing of pharmacogenes, but the germline pharmacogenetic variants are rarely included in the clinical reports, despite many being clinically actionable. We established an informatics workflow to evaluate the clinical sequencing results for pharmacogenetic variants.
View Article and Find Full Text PDFSci Rep
January 2025
Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706, Santiago de Compostela, Spain.
Aripiprazole (ARI) is an atypical antipsychotic which is a substrate of P-glycoprotein (P-gp), a transmembrane glycoprotein that plays a crucial role in eliminating potentially harmful compounds from the organism. ARI once-monthly (AOM) is a long-acting injectable form which improves treatment compliance. Genetic polymorphisms in ABCB1 may lead to changes in P-gp function, leading to individual differences in drug disposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!