Wavelength-tunable semiconductor nanolasers have attracted tremendous attention for their tunable emissions and robust stability, bringing possibilities for various applications, including nanophotonic circuits, solid-state white-light sources, wavelength-converted devices, and on-chip optical communications. Here, we report on the demonstration of broadband-tunable, single-mode nanolasers based on high-quality alloyed single crystalline CdSSe ( = 0-1) nanotripods with well-formed facets fabricated using a conventional CVD approach. Microstructural characterization and optical investigations reveal that these structures are crystalline with composition-tunable CdSSe alloys. Microphotoluminescence spectra and mapping of these nanotripods exhibit emissions with continuous wavelengths from 509 to 712 nm, further demonstrating that the CdSSe alloys have tunable bandgaps due to the composition gradient. Additionally, under a pulse laser illumination, room-temperature single-mode lasing is clearly observed from these nanotripods cavities, which shows almost identical emission lines with a high-quality factor of ∼1231. More importantly, wavelength continuously tunable nanolasers from 520 to 738 nm are successfully constructed using these bandgap gradient nanotripods. The capability to fabricate high-quality tunable nanolasers represents a significant step toward high-integration optical circuits and photonics communications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c04632 | DOI Listing |
All-inorganic perovskite materials have been widely used in various devices, including lasers, light-emitting diodes (LEDs), and solar cells, due to their exceptional optoelectronic properties. Devices utilizing high-quality single crystals are anticipated to achieve significantly enhanced performance. In this work, we present a high-performance vertical cavity surface emitting laser (VCSEL) based on a single-crystal CsPbBr microplatelet, fabricated through a simple solution process and sandwiched between two distributed Bragg reflector (DBRs).
View Article and Find Full Text PDFWe report lasing action in a femtosecond-laser-inscribed waveguide in thulium-doped barium-gallium-germanium oxide (BGG) glass. A laser cavity was assembled with this waveguide that provided a single-mode output of 62 mW when pumped at 1.6 µm.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, USA.
The ultimate limit for laser miniaturization would be achieving lasing action in the lowest-order cavity mode within a device volume of ≤(λ/2n), where λ is the free-space wavelength and n is the refractive index. Here we highlight the equivalence of localized surface plasmons and surface plasmon polaritons within resonant systems, introducing nanolasers that oscillate in the lowest-order localized surface plasmon or, equivalently, half-cycle surface plasmon polariton. These diffraction-limited single-mode emitters, ranging in size from 170 to 280 nm, harness strong coupling between gold and InGaAsP in the near-infrared (λ = 1,000-1,460 nm), away from the surface plasmon frequency.
View Article and Find Full Text PDFErbium-doped thin-film lithium niobate (TFLN) lasers have attracted great interest in recent years due to their compatibility with high-speed electro-optic (EO) modulation on the same platform. In this work, high-efficiency single-mode erbium-doped microring lasers with milliwatt output powers were demonstrated. Monolithic lithium niobate microring resonators using pulley-waveguide-coupling were fabricated by the photolithography assisted chemo-mechanical etching (PLACE) technique.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Zhejiang Lab, Hangzhou, 311121, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!