A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multinational Federated Learning Approach to Train ECG and Echocardiogram Models for Hypertrophic Cardiomyopathy Detection. | LitMetric

Background: Novel targeted treatments increase the need for prompt hypertrophic cardiomyopathy (HCM) detection. However, its low prevalence (0.5%) and resemblance to common diseases present challenges that may benefit from automated machine learning-based approaches. We aimed to develop machine learning models to detect HCM and to differentiate it from other cardiac conditions using ECGs and echocardiograms, with robust generalizability across multiple cohorts.

Methods: Single-institution HCM ECG models were trained and validated on external data. Multi-institution models for ECG and echocardiogram were trained on data from 3 academic medical centers in the United States and Japan using a federated learning approach, which enables training on distributed data without data sharing. Models were validated on held-out test sets for each institution and from a fourth academic medical center and were further evaluated for discrimination of HCM from aortic stenosis, hypertension, and cardiac amyloidosis. Last, automated detection was compared with manual interpretation by 3 cardiologists on a data set with a realistic HCM prevalence.

Results: We identified 74 376 ECGs for 56 129 patients and 8392 echocardiograms for 6825 patients at the 4 academic medical centers. Although ECG models trained on data from each institution displayed excellent discrimination of HCM on internal test data (C statistics, 0.88-0.93), the generalizability was limited, most notably for a model trained in Japan and tested in the United States (C statistic, 0.79-0.82). When trained in a federated manner, discrimination of HCM was excellent across all institutions (C statistics, 0.90-0.96 and 0.90-0.96 for ECG and echocardiogram model, respectively), including for phenotypic subgroups. The models further discriminated HCM from hypertension, aortic stenosis, and cardiac amyloidosis (C statistics, 0.84, 0.83, and 0.88, respectively, for ECG and 0.93, 0.94, 0.85, respectively, for echocardiogram). Analysis of electrocardiography-echocardiography paired data from 11 823 patients from an external institution indicated a higher sensitivity of automated HCM detection at a given positive predictive value compared with cardiologists (0.98 versus 0.81 at a positive predictive value of 0.01 for ECG and 0.78 versus 0.59 at a positive predictive value of 0.24 for echocardiogram).

Conclusions: Federated learning improved the generalizability of models that use ECGs and echocardiograms to detect and differentiate HCM from other causes of hypertrophy compared with training within a single institution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9439630PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.121.058696DOI Listing

Publication Analysis

Top Keywords

federated learning
12
ecg echocardiogram
12
academic medical
12
discrimination hcm
12
positive predictive
12
hcm
10
learning approach
8
models
8
hypertrophic cardiomyopathy
8
hcm detection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!