Introduction: Proviral HIV DNA integrated within CD4 T-cells maintains an archive of viral variants that replicate during the course of the infection, including variants with reduced drug susceptibility. We considered studies that investigated archived drug resistance, with a focus on virologically suppressed patients and highlighted interpretative caveats and gaps in knowledge.

Results: Either Sanger or deep sequencing can be used to investigate resistance-associated mutations (RAMs) in HIV DNA recovered from peripheral blood. Neither technique is free of limitations. Furthermore, evidence regarding the establishment, maintenance, expression and clinical significance of archived drug-resistant variants is conflicting. This in part reflects the complexity of the HIV proviral landscape and its dynamics during therapy. Clinically, detection of RAMs in cellular HIV DNA has a variable impact on treatment outcomes, modulated by the drugs affected, treatment duration and additional determinants of virological failure, including those leading to suboptimal drug exposure.

Conclusions: Sequencing cellular HIV DNA can provide helpful complementary information in treatment-experienced patients with suppressed plasma HIV RNA who require a change of regimen. However, care should be taken when interpreting the results. Presence of RAMs is not necessarily a barrier to treatment success. Conversely, even the most sensitive sequencing techniques will fail to provide a comprehensive view of the HIV DNA archive. To inform treatment decisions appropriately, the overall clinical and treatment history of a patient must always be considered alongside the results of resistance testing. Prospective controlled studies are needed to validate the utility of drug resistance testing using cellular HIV DNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617980PMC
http://dx.doi.org/10.1007/s40121-022-00676-yDOI Listing

Publication Analysis

Top Keywords

hiv dna
28
drug resistance
12
cellular hiv
12
hiv
9
resistance testing
8
dna
6
drug
5
treatment
5
sequencing
4
dna sequencing
4

Similar Publications

Real-world data on treatment outcomes or the quality of large-scale chronic hepatitis B (CHB) treatment programs in sub-Saharan Africa (SSA) is extremely difficult to obtain. In this study, we aimed to provide data on the prevalence and incidence of mortality, loss to follow-up (LFTU), and their associated factors in patients with CHB in three treatment centres in Eritrea. Additional information includes baseline clinical profiles of CHB patients initiated on nucleos(t)ide analogue (NUCs) along with a comparison of treatment with Tenofovir disoproxil fumarate (TDF) vs.

View Article and Find Full Text PDF

Effect of in vitro exposure of first-line antiretrovirals on healthy human spermatozoa on kinematics and motility.

Int Urol Nephrol

January 2025

Department of Urology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.

Purpose: Contemporary antiretroviral (ARV) medications are used by millions of men for HIV treatment worldwide. Limited data exist on their direct effect on sperm motility. This pilot study hypothesizes that in vitro exposure to ARVs will reduce sperm kinematic and motility parameter values.

View Article and Find Full Text PDF

Background: Persistent latent reservoirs of intact HIV-1 proviruses, capable of rebounding despite suppressive antiretroviral therapy (ART), hinder efforts towards an HIV-1 cure. Hence, assays specifically quantifying intact proviruses are crucial to assess the impact of curative interventions. Two recent assays have been utilized in clinical trials: intact proviral DNA assay (IPDA) and quadruplex quantitative PCR (Q4PCR).

View Article and Find Full Text PDF

Retroviruses are among the most extensively studied viral families, both historically and in contemporary research. They are primarily investigated in the fields of viral oncogenesis, reverse transcription mechanisms, and other infection-specific aspects. These include the integration of endogenous retroviruses (ERVs) into host genomes, a process widely utilized in genetic engineering, and the ongoing search for HIV/AIDS treatment.

View Article and Find Full Text PDF

Targeted knockdown of ATM, ATR, and PDEδ increases Gag HIV-1 VLP production in HEK293 cells.

Appl Microbiol Biotechnol

January 2025

Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.

Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!