Humic acid coupled with coal gasification slag for enhancing the remediation of Cd-contaminated soil under alternated light/dark cycle.

Environ Sci Pollut Res Int

College of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi Province, China.

Published: January 2023

In this study, the synthesis of a coal gasification slag-humic acid (SA) hybrid was purposed for the remediation of cadmium (Cd)-contaminated soil. In order to investigate the effect of SA on the Cd-contaminated soil and plant growth, a series of experiments were carried out under different illumination condition. The results showed that the SA has some the photocatalytic activity, and adding 10 wt% of SA to the soil could obviously improve the soil fertility and decrease the mobility of Cd in the soil under alternated light/dark cycle (12L/12D); the content of the residual fraction in the SA-amended soil reached 69.5%, and the Cd decreasing rates for the leaf, stem, and root of Artemisia ordosica were near 100%, 91.3%, and 75.3%, respectively. Characterizations of amendments suggested that the synergistic effect of precipitation and surface complexation played a major role in the remediation of Cd-contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-22308-1DOI Listing

Publication Analysis

Top Keywords

cd-contaminated soil
16
coal gasification
8
remediation cd-contaminated
8
soil
8
soil alternated
8
alternated light/dark
8
light/dark cycle
8
humic acid
4
acid coupled
4
coupled coal
4

Similar Publications

The synergistic application of calcium (Ca) and magnesium (Mg) was investigated to mitigate cadmium (Cd) uptake and translocation in rice grown in Cd-contaminated soil. A pot experiment was conducted using different Ca:Mg molar ratios (Ca1:Mg2, Ca2:Mg1, and Ca1:Mg1) to evaluate their effect on Cd uptake. The results showed that the Ca1:Mg1 treatment achieved the highest reduction in grain Cd content (54.

View Article and Find Full Text PDF

Researchers have reported that Bacillus megaterium BM18-2 reduces Cd toxicity in Hybrid Pennisetum, but understanding the interaction between plants and associated endophytes is crucial for understanding phytoremediation strategies under heavy metal stress. The current study aims to monitor the colonization patterns of GFP-labeled endophytic bacteria BM18-2 on Hybrid Pennisetum grass. Additionally, it will monitor Cd's effect on plant bacterial colonization.

View Article and Find Full Text PDF

Background: Globally, salinity poses a threat to crop productivity by hindering plant growth and development via osmotic stress and ionic cytotoxicity. Plant extracts have lately been employed as exogenous adjuvants to improve endogenous plant defense mechanisms when grown under various environmental stresses, such as salinity. This study investigated the potential of melatonin (Mt; 0, 50, and 100 mM) as an antioxidant and licorice root extract (LRE; 0.

View Article and Find Full Text PDF

Cadmium (Cd) toxicity in agricultural soil is increasing globally and significantly impacts crop production and food safety. Tibetan hull-less barley ( L. var.

View Article and Find Full Text PDF

Revitalizing Soybean Plants in Saline, Cd-Polluted Soil Using Si-NPs, Biochar, and PGPR.

Plants (Basel)

December 2024

Department of Agricultural Microbiology, Agriculture and Biology Research Institute, National Research Centre, 33 EI Buhouth St., Dokki, Cairo 12622, Egypt.

Excessive irrigation of saline-alkaline soils with Cd-contaminated wastewater has resulted in deterioration of both soil and plant quality. To an investigate this, a study was conducted to explore the effects of biochar (applied at 10 t ha), PGPRs ( (USDA 110) + at 1:1 ratio), and Si-NPs (25 mg L) on soybean plants grown in saline-alkali soil irrigated with wastewater. The results showed that the trio-combination of biochar with PGPRs, (as soil amendments) and Si-NPs (as foliar spraying), was more effective than individual or coupled applications in reducing Cd bioavailability in the soil, minimizing its absorption, translocation and bioconcentration in soybean tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!