Estimating the state of health (SOH) of batteries powering electronic devices in real-time while in use is a necessity. The applicability of most of the existing methods is limited to the datasets that are used to train the models. In this work, we propose a generic method for SOH estimation with much wider applicability. The key problem is the identification of the right feature set which is derived from measurable voltage signals. In this work, relative rise in voltage drop across cell resistance with aging has been used as the feature. A base artificial neural network (ANN) model has been used to map the generic relation between voltage and SOH. The base ANN model has been trained using limited battery data. Blind testing has been done on long cycle in-house data and publicly available datasets. In-house data included both laboratory and on-device data generated using various charge profiles. Transfer learning has been used for public datasets as those batteries have different physical dimensions and cell chemistry. The mean absolute error in SOH estimation is well within 2% for all test cases. The model is robust across scenarios such as cell variability, charge profile difference, and limited variation in temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9343662 | PMC |
http://dx.doi.org/10.1038/s41598-022-16692-4 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Department of Mathematics, National Institute of Technology Uttarakhand, Srinagar, India.
As humans age, they experience deformity and a decrease in their bone strength, such brittleness in the bones ultimately lead to bone fracture. Magnetic field exposure combined with physical exercise may be useful in mitigating age-related bone loss by improving the canalicular fluid motion within the bone's lacuno-canalicular system (LCS). Nevertheless, an adequate amount of fluid induced shear stress is necessary for the bone mechano-transduction and solute transport in the case of brittle bone diseases.
View Article and Find Full Text PDFActa Crystallogr A Found Adv
March 2025
Pennsylvania State University, University Park, PA 16802, USA.
X-ray diffraction is ideal for probing the sub-surface state during complex or rapid thermomechanical loading of crystalline materials. However, challenges arise as the size of diffraction volumes increases due to spatial broadening and because of the inability to deconvolute the effects of different lattice deformation mechanisms. Here, we present a novel approach that uses combinations of physics-based modeling and machine learning to deconvolve thermal and mechanical elastic strains for diffraction data analysis.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany.
Interactions of polyelectrolytes (PEs) with proteins play a crucial role in numerous biological processes, such as the internalization of virus particles into host cells. Although docking, machine learning methods, and molecular dynamics (MD) simulations are utilized to estimate binding poses and binding free energies of small-molecule drugs to proteins, quantitative prediction of the binding thermodynamics of PE-based drugs presents a significant obstacle in computer-aided drug design. This is due to the sluggish dynamics of PEs caused by their size and strong charge-charge correlations.
View Article and Find Full Text PDFComput Struct Biotechnol J
January 2025
Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, NY, USA.
Despite the wealth of single-cell multi-omics data, it remains challenging to predict the consequences of novel genetic and chemical perturbations in the human body. It requires knowledge of molecular interactions at all biological levels, encompassing disease models and humans. Current machine learning methods primarily establish statistical correlations between genotypes and phenotypes but struggle to identify physiologically significant causal factors, limiting their predictive power.
View Article and Find Full Text PDFElectronics (Basel)
December 2024
Department of Mechanical Engineering, City College of New York, New York, NY 10031, USA.
Cardiovascular disease is a leading cause of death worldwide. The differentiation of human pluripotent stem cells (hPSCs) into functional cardiomyocytes offers significant potential for disease modeling and cell-based cardiac therapies. However, hPSC-derived cardiomyocytes (hPSC-CMs) remain largely immature, limiting their experimental and clinical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!