Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is often assumed that genotoxic substances will be detected more easily by using in vitro rather than in vivo genotoxicity tests since higher concentrations, more cytotoxicity and static exposures can be achieved. However, there is a paucity of data demonstrating whether genotoxic substances are detected at lower concentrations in cell culture in vitro than can be reached in the blood of animals treated in vivo. To investigate this issue, we compared the lowest concentration required for induction of chromosomal damage in vitro (lowest observed effective concentration, or LOEC) with the concentration of the test substance in blood at the lowest dose required for biologically relevant induction of micronuclei in vivo (lowest observed effective dose, or LOED). In total, 83 substances were found for which the LOED could be identified or estimated, where concentrations in blood and micronucleus data were available via the same route of administration in the same species, and in vitro chromosomal damage data were available. 39.8 % of substances were positive in vivo at blood concentrations that were lower than the LOEC in vitro, 22.9 % were positive at similar concentrations, and 37.3 % of substances were positive in vivo at higher concentrations. Distribution analysis showed a very wide scatter of > 6 orders of magnitude across these 3 categories. When mode of action was evaluated, the distribution of clastogens and aneugens across the 3 categories was very similar. Thus, the ability to detect induction of micronuclei in bone marrow in vivo regardless of the mechanism for micronucleus induction, is clearly not solely determined by the concentration of test substance which induced chromosomal damage in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mrgentox.2022.503503 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!