Curcumin (Cur) plays a key role in photodynamic antibacterial activity as a photosensitizer. On the other hand, the antimicrobial potential of graphene oxide (GO) has been reported controversially, and how to improve its antimicrobial ability has become an meaningful study. In this study, we prepared polydopamine-curcumin (PDA-Cur) by pi-pi stacking and loaded it onto the GO surface to obtain GO/PDA-Cur composite nanomaterials. GO/PDA-Cur was characterized by physical and optical means, and GO/PDA-Cur possessed good dispersion and stability in water. In vitro antibacterial results showed that GO/PDA-Cur mediated photodynamic therapy significantly reduced Gram-positive Staphylococcus aureus (S. aureus) by 4 orders of magnitude with a bactericidal rate of 99.99 %. The antibacterial mechanism stems from the fact that GO/PDA-Cur can generate reactive oxygen species (ROS) under white light irradiation (405-780 nm), which causes bacterial outer membrane breakage and cellular deformation. In addition, GO/PDA-Cur has good biocompatibility. The antibacterial ability of graphene oxide was significantly improved by combining it with PDA-Cur, which allows it to be used as a photodynamic antibacterial material.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2022.213040DOI Listing

Publication Analysis

Top Keywords

composite nanomaterials
8
staphylococcus aureus
8
white light
8
photodynamic antibacterial
8
graphene oxide
8
antibacterial
6
go/pda-cur
6
preparation graphene
4
graphene oxide/polydopamine-curcumin
4
oxide/polydopamine-curcumin composite
4

Similar Publications

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method.

View Article and Find Full Text PDF

Calcium Phosphate (CaP) Composite Nanostructures on Polycaprolactone (PCL): Synergistic Effects on Antibacterial Activity and Osteoblast Behavior.

Polymers (Basel)

January 2025

Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea.

Bone tissue engineering aims to develop biomaterials that are capable of effectively repairing and regenerating damaged bone tissue. Among the various polymers used in this field, polycaprolactone (PCL) is one of the most widely utilized. As a biocompatible polymer, PCL is easy to fabricate, cost-effective, and offers consistent quality control, making it a popular choice for biomedical applications.

View Article and Find Full Text PDF

This review explores the impact of various additives on the mechanical properties of polylactic acid (PLA) filaments used in Fused Deposition Modeling (FDM) 3D printing. While PLA is favored for its biodegradability and ease of use, its inherent limitations in strength and heat resistance necessitate enhancements through additives. The impact of natural and synthetic fibers, inorganic particles, and nanomaterials on the mechanical properties, printability, and overall functionality of PLA composites was examined, indicating that fiber reinforcements, such as carbon and glass fibers, significantly enhance tensile strength and stiffness, while natural fibers contribute to sustainability but may compromise mechanical stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!