Steroids are an important class of biomolecules studied for their role in metabolism, development, nutrition, and disease. Although highly sensitive GC- and LC-MS/MS-based methods have been developed for targeted quantitation of known steroid metabolites, emerging techniques including ion mobility (IM) have shown promise in improved analysis and capacity to better identify unknowns in complex biological samples. Herein, we couple LC-IM-MS/MS with structurally selective reactions targeting hydroxyl and carbonyl functional groups to improve IM resolution and structural elucidation. We demonstrate that 1,1-carbonyldiimidazole derivatization of hydroxyl stereoisomer pairs such as testosterone/epitestosterone and androsterone/epiandrosterone results in increased IM resolution with ΔCCS > 15%. Additionally, performing this in parallel with derivatization of the carbonyl group by Girard's Reagent P resulted in unique products based on relative differences in number of each functional group and C17 alkylation. These changes could be easily deciphered using the combination of retention time, collision cross section, accurate mass, and MS/MS fragmentation pattern. Derivatization by Girard's Reagent P, which contains a fixed charge quaternary amine, also increased the ionization efficiency and could be explored for its potential benefit to sensitivity. Overall, the combination of these simple and easy derivatization reactions with LC-IM-MS/MS analysis provides a method for improved analysis of known target analytes while also yielding critical structural information that can be used for identification of potential unknowns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.2c00164 | DOI Listing |
Phys Chem Chem Phys
January 2025
Institute of Science and Technology, Federal University of São Paulo, 12247-014, São José dos Campos, São Paulo, Brazil.
This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.
View Article and Find Full Text PDFUnlabelled: Chronic back pain (CBP) is the leading cause of disability affecting 1 in 10 people worldwide. Symptoms are marked by persistent lower back pain, reduced mobility, and heightened cold sensitivity. Here, we utilize a mouse model of CBP induced by injecting urokinase-type plasminogen activator (uPA), a proinflammatory agent in the fibrinolytic pathway, between the L2/L3 lumbar vertebrae.
View Article and Find Full Text PDFComprehensive global proteome profiling that is amenable to high throughput processing will broaden our understanding of complex biological systems. Here, we evaluated two leading mass spectrometry techniques, Data Independent Acquisition (DIA) and Tandem Mass Tagging (TMT), for extensive protein abundance profiling. DIA provides label-free quantification with a broad dynamic range, while TMT enables multiplexed analysis using isobaric tags for efficient cross-sample comparisons.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Propofol, a widely used intravenous anesthetic agent, requires accurate monitoring to ensure therapeutic efficacy and prevent oversedation. Recent developments in modern analytical instrumentation have led to significant breakthroughs in on-line analysis of exhaled breath. This review discusses several sophisticated analytical methods that have been explored for noninvasive, real-time monitoring of propofol concentrations, including proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, and gas chromatography coupled to surface acoustic wave sensors.
View Article and Find Full Text PDFFood Chem X
January 2025
School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
This study aimed to explore the effects of different brining times on the sensory, physicochemical properties, and volatile organic compounds (VOCs) of marinated grass carp (MGC). The results showed that different brining time changed the sensory quality, color and texture. The moisture content increased significantly with the extension of brining time, while the salt content, protein content, thiobarbituric acid reactive substances (TBARS), and total volatile basic‑nitrogen (TVB-N) decreased ( 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!