The impact that escaped farmed fish may have on wild populations is of major concern for Atlantic salmon (Salmo salar) farming. Triploid fish, being infertile, were originally introduced to mitigate the genetic impact of escaped fish. In the recent years, an increase in the number of infectious salmon anaemia (ISA) outbreaks in Norway has been observed, mainly in the northern parts, which is also where farming of triploid fish has been licensed. The present study investigated the susceptibility of triploid Atlantic salmon to ISA both by field observations and experimental infections. Based on field observations, we found an increased susceptibility, with 9.4 increased odds to primary ISA outbreaks in triploid fish versus diploid fish at production-site level, and a tendency of increased odds (3.4) of ISA in triploid fish at individual cage level at sited with primary outbreaks. At some sites, ISA outbreaks were only diagnosed in cages with triploid fish and not in cages with diploid fish. Primary ISA outbreaks are the source for further spread of the disease, and it is noteworthy that in an experimental trial we found significantly more viral RNA in non-ISA-vaccinated triploid than in non-ISA-vaccinated diploid fish at the peak of the infection. Interestingly, the notable differences of susceptibility to ISA for non-ISA vaccinated diploid and triploid fish observed in field were not repeated experimentally. The possible increased risk of ISA should be considered when evaluating the costs and benefits of triploid salmon in farming. It is recommended to keep triploid and diploid fish in biosecure separated sites, or that triploid fish are not farmed at all.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805046 | PMC |
http://dx.doi.org/10.1111/jfd.13695 | DOI Listing |
Metabolites
December 2024
Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China.
The salinization of the water environment worldwide is increasing, which has brought great challenges to the sustainability of fish farming of aquatic animals. Three NaHCO concentration groups (0 mmol/L, 20 mmol/L, and 60 mmol/L) were set up in this study to investigate growth and metabolic differences between diploid and triploid crucian carp under saline-alkaline stresses. This study utilized UPLC-QTOF/MS metabolomics to analyze significant metabolites and metabolic pathways in the serum of diploid and triploid crucian carp, exposing them to different NaHCO concentrations in saline-alkaline habitats, elucidating the mechanism of their metabolic differences.
View Article and Find Full Text PDFZygote
December 2024
Division of Aquatic Environmental Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India.
Rainbow trout () is a promising cultivable fish species with significant potential for expansion. As a cold-water fish belonging to the Salmonidae family, it requires an optimal temperature range of 10-15°C for optimal growth. This study explores a method for producing sterile rainbow trout with maximum survival rates by using heat shock treatment to enhance growth characteristics and improve aquaculture practices.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China.
from Sichuan is a valuable germplasm with high economic potential, but it faces variety scarcity. To address this, this study collected 16 varieties (lines), identifying IpHT1 as a promising parent due to its high oil content (38.5%) and red fruits.
View Article and Find Full Text PDFAnim Reprod Sci
January 2025
Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av, Gdynia 81-378, Poland.
Dev Comp Immunol
January 2025
Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
The clonal triploid ginbuna crucian carp Carassius auratus langsdorfii, a naturally occurring gynogenetic fish, is suitable for cell transplantation studies to reveal the roles of stem cells and immune cells. To ensure long-term traceability of donor cells within recipient fish, we have established a transgenic ginbuna line that expresses green fluorescent protein (GFP). The Xenopus laevis ef1a promoter was introduced for regulating GFP expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!