Principal components analysis has been used to reduce the dimensionality of datasets for a long time. In this paper, we will demonstrate that in mode detection the components of smallest variance, the pettiest components, are more important. We prove that for a multivariate normal or Laplace distribution, we obtain boxes of optimal volume by implementing "pettiest component analysis," in the sense that their volume is minimal over all possible boxes with the same number of dimensions and fixed probability. This reduction in volume produces an information gain that is measured using active information. We illustrate our results with a simulation and a search for modal patterns of digitized images of hand-written numbers using the famous MNIST database; in both cases pettiest components work better than their competitors. In fact, we show that modes obtained with pettiest components generate better written digits for MNIST than principal components.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063353 | PMC |
http://dx.doi.org/10.1109/TPAMI.2022.3195462 | DOI Listing |
IEEE Trans Pattern Anal Mach Intell
April 2023
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!