Current Applications of Artificial Intelligence in Benign Prostatic Hyperplasia.

Turk J Urol

iTRUE (International Training and Research in Uro-oncology and Endourology) Group, Manipal, Karnataka, India ; Department of Urology, University Hospital Southampton NHS Trust, Southampton, UK.

Published: July 2022

Artificial intelligence is used in predicting the clinical outcomes before minimally invasive treatments for benign prostatic hyperplasia, to address the insufficient reliability despite multiple assessment parameters, such as flow rates and symptom scores. Various models of artificial intelligence and its contemporary applications in benign prostatic hyperplasia are reviewed and discussed. A search strategy adapted to identify and review the literature on the application of artificial intelligence with a dedicated search string with the following keywords: "Machine Learning," "Artificial Intelligence," AND "Benign Prostate Enlargement" OR "BPH" OR "Benign Prostatic Hyperplasia" was included and categorized. Review articles, editorial comments, and non-urologic studies were excluded. In the present review, 1600 patients were included from 4 studies that used different classifiers such as fuzzy systems, computer-based vision systems, and clinical data mining to study the applications of artificial intelligence in diagnoses and severity prediction and determine clinical factors responsible for treatment response in benign prostatic hyperplasia. The accuracy to correctly diagnose benign prostatic hyperplasia by Fuzzy systems was 90%, while that of computer-based vision system was 96.3%. Data mining achieved sensitivity and specificity of 70% and 50%, respectively, in correctly predicting the clinical response to medical treatment in benign prostatic hyperplasia. Artificial intelligence is gaining attraction in urology, with the potential to improve diagnostics and patient care. The results of artificial intelligence-based applications in benign prostatic hyperplasia are promising but lack generalizability of results. However, in the future, we will see a shift in the clinical paradigm as artificial intelligence applications will find their place in the guidelines and revolutionize the decision-making process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612697PMC
http://dx.doi.org/10.5152/tud.2022.22028DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
28
benign prostatic
28
prostatic hyperplasia
28
artificial
8
applications artificial
8
prostatic
8
hyperplasia artificial
8
predicting clinical
8
applications benign
8
fuzzy systems
8

Similar Publications

Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.

View Article and Find Full Text PDF

Background: The implementation of large language models (LLMs), such as BART (Bidirectional and Auto-Regressive Transformers) and GPT-4, has revolutionized the extraction of insights from unstructured text. These advancements have expanded into health care, allowing analysis of social media for public health insights. However, the detection of drug discontinuation events (DDEs) remains underexplored.

View Article and Find Full Text PDF

Retrosynthesis is a strategy to analyze the synthetic routes for target molecules in medicinal chemistry. However, traditional retrosynthesis predictions performed by chemists and rule-based expert systems struggle to adapt to the vast chemical space of real-world scenarios. Artificial intelligence (AI) has revolutionized retrosynthesis prediction in recent decades, significantly increasing the accuracy and diversity of predictions for target compounds.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) has reached a significant level of maturity in biology, demonstrated by the diversity of modes for obtaining not only topographical images but also insightful mechanical and adhesion data by performing force measurements on delicate samples with a controlled environment (e.g., liquid, temperature, pH).

View Article and Find Full Text PDF

Graph convolution network-based eeg signal analysis: a review.

Med Biol Eng Comput

January 2025

School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China.

With the advancement of artificial intelligence technology, more and more effective methods are being used to identify and classify Electroencephalography (EEG) signals to address challenges in healthcare and brain-computer interface fields. The applications and major achievements of Graph Convolution Network (GCN) techniques in EEG signal analysis are reviewed in this paper. Through an exhaustive search of the published literature, a module-by-module discussion is carried out for the first time to address the current research status of GCN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!