Artificial intelligence is used in predicting the clinical outcomes before minimally invasive treatments for benign prostatic hyperplasia, to address the insufficient reliability despite multiple assessment parameters, such as flow rates and symptom scores. Various models of artificial intelligence and its contemporary applications in benign prostatic hyperplasia are reviewed and discussed. A search strategy adapted to identify and review the literature on the application of artificial intelligence with a dedicated search string with the following keywords: "Machine Learning," "Artificial Intelligence," AND "Benign Prostate Enlargement" OR "BPH" OR "Benign Prostatic Hyperplasia" was included and categorized. Review articles, editorial comments, and non-urologic studies were excluded. In the present review, 1600 patients were included from 4 studies that used different classifiers such as fuzzy systems, computer-based vision systems, and clinical data mining to study the applications of artificial intelligence in diagnoses and severity prediction and determine clinical factors responsible for treatment response in benign prostatic hyperplasia. The accuracy to correctly diagnose benign prostatic hyperplasia by Fuzzy systems was 90%, while that of computer-based vision system was 96.3%. Data mining achieved sensitivity and specificity of 70% and 50%, respectively, in correctly predicting the clinical response to medical treatment in benign prostatic hyperplasia. Artificial intelligence is gaining attraction in urology, with the potential to improve diagnostics and patient care. The results of artificial intelligence-based applications in benign prostatic hyperplasia are promising but lack generalizability of results. However, in the future, we will see a shift in the clinical paradigm as artificial intelligence applications will find their place in the guidelines and revolutionize the decision-making process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612697 | PMC |
http://dx.doi.org/10.5152/tud.2022.22028 | DOI Listing |
Brief Bioinform
November 2024
School of Artificial Intelligence, Jilin University, Qianjin Street 2699, 130010 Changchun, China.
Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Industrial and Systems Engineering, The University of Florida, GAINESVILLE, FL, United States.
Background: The implementation of large language models (LLMs), such as BART (Bidirectional and Auto-Regressive Transformers) and GPT-4, has revolutionized the extraction of insights from unstructured text. These advancements have expanded into health care, allowing analysis of social media for public health insights. However, the detection of drug discontinuation events (DDEs) remains underexplored.
View Article and Find Full Text PDFJ Med Chem
January 2025
Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Retrosynthesis is a strategy to analyze the synthetic routes for target molecules in medicinal chemistry. However, traditional retrosynthesis predictions performed by chemists and rule-based expert systems struggle to adapt to the vast chemical space of real-world scenarios. Artificial intelligence (AI) has revolutionized retrosynthesis prediction in recent decades, significantly increasing the accuracy and diversity of predictions for target compounds.
View Article and Find Full Text PDFACS Nano
January 2025
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
Atomic force microscopy (AFM) has reached a significant level of maturity in biology, demonstrated by the diversity of modes for obtaining not only topographical images but also insightful mechanical and adhesion data by performing force measurements on delicate samples with a controlled environment (e.g., liquid, temperature, pH).
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China.
With the advancement of artificial intelligence technology, more and more effective methods are being used to identify and classify Electroencephalography (EEG) signals to address challenges in healthcare and brain-computer interface fields. The applications and major achievements of Graph Convolution Network (GCN) techniques in EEG signal analysis are reviewed in this paper. Through an exhaustive search of the published literature, a module-by-module discussion is carried out for the first time to address the current research status of GCN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!