Although grating couplers have become the de-facto standard for optical access to integrated silicon photonics platforms, their performance at visible wavelengths, in moderate index contrast platforms such as silicon nitride, leaves significant room for improvement. In particular, the index contrast governs the diffraction efficiency per grating tooth and the resulting overall coupler length. In this work, we develop two approaches to address this problem: a dielectric grating that sums multiple optical modes to increase the overall output intensity; and an embedded metal grating that enhances the attainable refractive index contrast, and therefore reduces the on-chip footprint. We present experimental results that can be developed to realize compact efficient visible wavelength photonic interconnects, with a view toward cryogenic deployment for quantum photonics, where space is constrained and efficiency is critical.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.468275DOI Listing

Publication Analysis

Top Keywords

grating couplers
8
visible wavelength
8
grating
5
compact high-efficiency
4
high-efficiency grating
4
couplers visible
4
wavelength photonics
4
photonics grating
4
couplers de-facto
4
de-facto standard
4

Similar Publications

Article Synopsis
  • The proposed hybrid photonic platform combines chalcogenide glass (GeSbSe) with lithium niobate on insulator (LNOI) to enhance performance and compactness for integrated photonic systems.
  • Key components such as grating couplers, micro-ring resonators, multimode interference couplers, and Mach-Zehnder interferometers are designed and fabricated, achieving high quality factors and low propagation losses.
  • This platform's unique optical properties allow for scalable, low-loss integrated photonic circuits, making it suitable for applications in high-speed optical communications and signal processing.
View Article and Find Full Text PDF

Grating-assisted, contra-directional couplers (GA-CDCs), owing to their four-port operations, can offer several important advantages over traditional, single waveguide-based Bragg gratings. However, how to flexibly design the spectral responses of GA-CDCs has been much less studied. We report the spectral tailoring methodology of GA-CDCs to achieve arbitrary, physically realizable, complex spectral responses.

View Article and Find Full Text PDF

Polymer photonics is receiving significant attention due to its potential for a wide range of integrated photonic applications and wide wavelength transparency. Wafer-scale testing is challenging due to low-index contrast in polymer waveguides. In this Letter, we demonstrate an amorphous silicon based out-of-plane polymer waveguide grating coupler.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a novel technique for high coupling efficiency in polarization splitting waveguide grating couplers (PSWGCs) using a shifted polysilicon overlay grating over a silicon base.
  • The simulations indicated coupling efficiencies of -1.46 dB for transverse electric (TE) and -1.88 dB for transverse magnetic (TM) polarizations, while experiments showed slightly higher losses at -2.37 dB for TE and -2.51 dB for TM.
  • This innovative design does not require bottom metal reflectors and is compatible with mass production methods used in commercial silicon photonics.
View Article and Find Full Text PDF

Surface grating couplers, such as fiber-chip grating couplers and optical antennas, are fundamental devices in photonic integrated circuits, as they enable the coupling of light between the chip and an external medium. An important metric of surface grating couplers is the coupling efficiency, and high values, greater than -1 dB, are required for applications in quantum technology, light detection and ranging, and optical interconnects. Surface grating couplers typically suffer from radiation loss to the substrate, which significantly limits their coupling efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!