We report a narrow bandwidth spatiotemporal mode-locked (STML) ytterbium-doped fiber laser, based on a homemade carbon nanotube/polyvinyl alcohol composite film and the multimode interference filtering effect. The wavelength-tunable narrow bandwidth STML operations combined with different pulse states are achieved, including single pulse, multiple pulses, and harmonics. The 3-dB bandwidth at the single-pulse state is 103 pm, while at the harmonic state, it is as narrow as 26 pm. To give an insight into the generation of the narrow bandwidth STML pulses, numerical simulations are performed. Such a laser has a wide range of potential applications in fields of optical communication and optical measurement, as well as provides a favorable platform for studying the evolution dynamics of multimode solitons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.465533 | DOI Listing |
Chem Commun (Camb)
January 2025
Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.
Sci Rep
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
In recent years, research on chiral bound states in the continuum (BIC) has surged, leading to the development of various chiral metasurfaces with narrow bandwidths by breaking of in-plane and out-of-plane symmetries. However, the ability to dynamically tune the working band remains relatively unexplored, which is valuable for chiral sensing applications. Optical phase-change materials, with tunable dielectric constants and switchable properties during phase transition, offer the potential for dynamic control of optical metasurfaces.
View Article and Find Full Text PDFNeuron
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China. Electronic address:
It has long been a decades-old dogma that image perception is mediated solely by rods and cones, while intrinsically photosensitive retinal ganglion cells (ipRGCs) are responsible only for non-image-forming vision, such as circadian photoentrainment and pupillary light reflexes. Surprisingly, we discovered that ipRGC activation enhances the orientation selectivity of layer 2/3 neurons in the primary visual cortex (V1) of mice by both increasing preferred-orientation responses and narrowing tuning bandwidth. Mechanistically, we found that the tuning properties of V1 excitatory and inhibitory neurons are differentially influenced by ipRGC activation, leading to a reshaping of the excitatory/inhibitory balance that enhances visual cortical orientation selectivity.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Institute of Reliable Embedded Systems and Communication Electronics (ivESK), Offenburg University of Applied Sciences, 77652 Offenburg, Germany.
Narrow Band-Wireless Wide Area Networking (NB-WWAN) technologies are becoming more popular across a wide range of application domains due to their ability to provide spatially distributed and reliable wireless connectivity in addition to offering low data rates, low bandwidth, long-range, and long battery life. For functional testing and performance assessments, the wide range of wireless technology alternatives within this category poses several difficulties. At the device level, it is necessary to address issues such as resource limitations, complex protocols, interoperability, and reliability, while at the network level, challenges include complex topologies and wireless channel/signal propagation problems.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Harbin Engineering University, Harbin 150001, China.
Multifunctional structures with excellent wave-absorbing and load-bearing properties have attracted much attention in recent years. Unlike other wave-absorbing materials, honeycomb wave-absorbing materials have appealing radar absorption and mechanical properties. However, the existing honeycomb wave-absorbing materials have problems such as narrow absorption band and poor compression resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!