We demonstrate that the sensitivity of nanoparticle detection on surfaces can be substantially improved by implementing synthetic optical holography (SOH) in coherent Fourier scatterometry (CFS), resulting in a phase-sensitive confocal differential detection technique that operates at very low power level (P = 0.016 mW). The improvement in sensitivity is due to two reasons: first, the boost in the signal at the detector due to the added reference beam; and second, the reduction of background noise caused by the electronics. With this new system, we are able to detect a 60-nm polystyrene latex (PSL) particle at a wavelength of 633 nm (∼λ/10) on a silicon wafer with an improvement in the signal-to-noise ratio (SNR) of approximately 4 dB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.463807 | DOI Listing |
Sci Rep
December 2024
Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 54, 10-710, Olsztyn, Poland.
A theoretical investigation of spin-orbit coupling effect on magnetotransport of a monolayer graphene system having the geometry of Aharonov-Bohm interferometer is presented. The spin-orbit interaction is considered in the form of Rashba spin-orbit (RSO) coupling. The problem is studied within atomistic tight-binding approximation in combination with non-equilibrium Green's functions formalism.
View Article and Find Full Text PDFStarting from the extension to complex arguments of the ordinary Fourier transform (FT) (due to Paley and Wiener) and from results concerning reproducing kernels in Hilbert spaces, we define a new, to the best of our knowledge, class of partially coherent planar sources presenting a structured degree of coherence. Such sources are shown to be of the Schell-model type as far as one of the transverse coordinates is concerned, while they depend on the average value of the orthogonal coordinate of the two points. Some examples are shown in detail, but the proposed approach can be easily extended to infinitely many other sources.
View Article and Find Full Text PDFJ Struct Biol
December 2024
Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Ave, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA. Electronic address:
Cryogenic electron tomography (cryo-ET) has rapidly advanced as a high-resolution imaging tool for visualizing subcellular structures in 3D with molecular detail. Direct image inspection remains challenging due to inherent low signal-to-noise ratios (SNR). We introduce CryoSamba, a self-supervised deep learning-based model designed for denoising cryo-ET images.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
Capturing the intricate dynamics of partially coherent patterns in coupled oscillator systems is vibrant and one of the crucial areas of nonlinear sciences. Considering higher-order Fourier modes in the coupling, we discover a novel type of clustered coherent state in phase models, where inside the coherent region oscillators are further split into q dynamically equivalent subgroups with a 2π/q phase difference between two neighboring subgroups, forming a multicoherent-phase (MUP) chimera state. Both a self-consistency analysis and the Ott-Antonsen dimension reduction techniques are used to theoretically derive these solutions, whose stability are further demonstrated by spectral analysis.
View Article and Find Full Text PDFThe photon-energy conversion covering the full spectral wave band is crucial for detecting and storing information. Schottky junctions in nanoscale such as TiO:Ag enable multicolor photochromism and information storage in the visible region. However, the photoelectrons from the UV-excited semiconductor cause the loss of information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!