A multi-channel parallel ultrasound detection system based on a photothermal tunable fiber optic sensor array is proposed. The resonant wavelength of the ultrasound sensor has a quadratic relationship with the power of a 980-nm heating laser. The maximum tuning range is larger than 15 nm. Through photothermal tuning, the inconsistent operating wavelengths of the Fabry-Perot (FP) sensor array can be solved, and then a multiplexing capacity of up to 53 can be theoretically realized, which could greatly reduce the time required for data acquisition. Then, a fixed wavelength laser with ultra-narrow linewidth is used to interrogate the sensor array. The interrogation system demonstrates a noise equivalent pressure (NEP) as low as 0.12 kPa, which is 5.5-times lower than the commercial hydrophone. Furthermore, a prototype of a four-channel ultrasound detection system is built to demonstrate the parallel detection capability. Compared with the independent detection, the SNR of parallel detection does not deteriorate, proving that the parallel detection system and the sensor array own very low cross talk characteristics. The parallel detection technique paves a way for real-time photoacoustic/ultrasound imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.464148DOI Listing

Publication Analysis

Top Keywords

sensor array
20
parallel detection
16
ultrasound detection
12
detection system
12
multi-channel parallel
8
parallel ultrasound
8
detection
8
based photothermal
8
photothermal tunable
8
tunable fiber
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!