Efficiently suppress of ferroptosis using deferoxamine nanoparticles as a new method for retinal ganglion cell protection after traumatic optic neuropathy.

Biomater Adv

School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; School of Biomedical and Engineering, Wenzhou Medical University, Wenzhou 325027, China. Electronic address:

Published: July 2022

AI Article Synopsis

  • Traumatic optic neuropathy (TON) leads to significant retinal ganglion cell (RGC) loss due to complex pathological mechanisms, with suggestive involvement of ferroptosis, an iron-dependent form of cell death.
  • Researchers used a rat model to test the delivery of hyaluronic acid (HA)-based deferoxamine (DFO) nanoparticles, aimed at reducing ferroptosis and protecting RGCs from TON-induced damage.
  • The study found that these DFO nanoparticles effectively concentrated around RGCs, enhanced DFO uptake, and inhibited key enzymes associated with cell death, presenting a potential new strategy for treating TON-related optic nerve injuries.

Article Abstract

Traumatic optic neuropathy (TON) is the major contributor to optic nerve damage, where the retinal ganglion cells (RGCs) are substantially lost. However, the underlying pathological mechanisms for these conditions remain largely elusive. Present work conducted a study on TON rat model, where the iron-dependent cyclooxygenase-2 (COX-2) overexpression and lipid peroxidation were observed in RGCs, suggesting ferroptosis, an iron-dependent non-apoptotic cell death, is involved in TON-induced death of RGCs. Hence, the newly formulated hyaluronic acid (HA)-based deferoxamine (DFO) nanoparticles (DFO-NPs) were intravitreally administrated in the rat model. It was hypothesized that the effective delivery of DFO, iron chelator, to the RGCs might rescue RGC ferroptosis from TON-induced injury. Also, since DFO is poor in bioavailability and of very short half-life in vivo, its safe and efficient intravitreal delivery is critical. Therefore, DFO-NPs were prepared by chemical grafting DFO onto HA molecules, and then crosslinking them in microemulsion bubbles for nanoparticles formulation. The nanoparticles were highly accumulated around the ganglionic cells and DFO uptake was increased in RGCs, accompanied by the significantly inhibited the overexpression of COX-2 and inactivation of glutathione peroxidase 4 (GPX4). These results indicate that DFO-NPs acted as an effective ferroptosis inhibitor, for the prevention of TON-induced RGC death. The current study provides new insights into the underlying mechanism of TON-induced RGC death, which may help to explore a novel strategy for the treatment of TON.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2022.212936DOI Listing

Publication Analysis

Top Keywords

retinal ganglion
8
traumatic optic
8
optic neuropathy
8
rat model
8
ton-induced rgc
8
rgc death
8
rgcs
5
dfo
5
efficiently suppress
4
ferroptosis
4

Similar Publications

The lack of effective therapies for visual restoration in Retinitis pigmentosa and macular degeneration has led to the development of new strategies, such as optogenetics and retinal prostheses. However, visual restoration is poor due to the massive light-evoked activation of retinal neurons, regardless of the segregation of visual information in ON and OFF channels, which is essential for contrast sensitivity and spatial resolution. Here, we show that Ziapin2, a membrane photoswitch that modulates neuronal capacitance and excitability in a light-dependent manner, is capable of reinstating, in mouse and rat genetic models of photoreceptor degeneration, brisk and sluggish ON, OFF, and ON-OFF responses in retinal ganglion cells evoked by full-field stimuli, with reactivation of their excitatory and inhibitory conductances.

View Article and Find Full Text PDF

Stem Cell-Based Therapies for Glaucoma Treatment: A Review Bridging the Gap in Veterinary Patients.

Int J Mol Sci

December 2024

Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal.

Retinal diseases are characterized by progressive damage to retinal cells, leading to irreversible vision loss. Among these, glaucoma stands out as a multifactorial neurodegenerative disease involving elevated intraocular pressure, retinal ganglion cell apoptosis, and optic nerve damage, ultimately resulting in blindness in both humans and dogs. Stem cell-based therapies have emerged as a promising therapeutic option for such conditions due to their regenerative and neuroprotective potential.

View Article and Find Full Text PDF

Co-targeting of glial activation and inflammation by tsRNA-Gln-i-0095 for treating retinal ischemic pathologies.

Cell Commun Signal

January 2025

Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.

Ischemic retinopathies are the major causes of blindness, yet effective early-stage treatments remain limited due to an incomplete understanding of the underlying molecular mechanisms. Significant changes in gene expression often precede structural and functional alterations. Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are emerging as novel gene regulators, involved in various biological processes and human diseases.

View Article and Find Full Text PDF

Objective: The study aimed to evaluate the interocular symmetry of macular sublayer thickness among healthy children aged 6-12 years.

Methods: The Shiraz Pediatric Eye Study included 500 randomly selected children who underwent SD-OCT of the macula and optical biometry using the IOLMaster-500. Exclusion criteria involved ocular abnormalities or axial lengths outside the 21.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!