AI Article Synopsis

  • Enterococcus faecalis is an opportunistic pathogen causing serious hospital-acquired infections, and treatment options are decreasing due to antibiotic resistance.
  • A significant risk factor for infection is the use of cephalosporin antibiotics, which E. faecalis is resistant to due to its unique penicillin-binding proteins (PBPs) that can cross-link peptidoglycan even in the presence of these antibiotics.
  • The study focused on the CroS/R two-component system that regulates gene expression related to cephalosporin resistance, revealing important genetic mechanisms that contribute to this resistance and highlighting the need for further research to improve treatment strategies.

Article Abstract

Enterococcus faecalis is an opportunistic pathogen and a major cause of severe nosocomial infections. Treatment options against enterococcal infections are declining due to the resistance of enterococci to numerous antibiotics. A key risk factor for developing enterococcal infections is treatment with cephalosporin antibiotics, to which enterococci are intrinsically resistant. For susceptible organisms, cephalosporins inhibit bacterial growth by acylating the active site of penicillin-binding proteins (PBPs), key enzymes that catalyze peptidoglycan cross-linking. Two specific PBPs of enterococci, Pbp4(5) and PbpA(2b), exhibit low reactivity toward cephalosporins, allowing these PBPs to cross-link peptidoglycan in the presence of cephalosporins to drive resistance in enterococci, but the mechanisms by which these PBPs are regulated are poorly understood. The CroS/R two-component signal transduction system (TCS) is also required for cephalosporin resistance. Activation of CroS/R by cephalosporins leads to CroR-dependent changes in gene expression. However, the specific genes regulated by CroS/R that are responsible for cephalosporin resistance remain largely unknown. In this study, we characterized CroR-dependent transcriptome remodeling by RNA-seq, identifying as a CroR regulon member in multiple, diverse lineages of E. faecalis. Through genetic analysis of the and promoters, we uncovered a CroR-dependent regulatory motif. Mutations in this motif to disrupt CroR-dependent upregulation of in the presence of cell wall stress resulted in a reduction of resistance to cephalosporins in E. faecalis, demonstrating that enhanced production of Pbp4(5) and likely other proteins involved in peptidoglycan biogenesis by the CroS/R system drives enterococcal cephalosporin resistance. Investigation into molecular mechanisms used by enterococci to subvert cephalosporin antibiotics is imperative for preventing and treating life-threatening infections. In this study, we used genetic means to investigate the functional output of the CroS/R TCS required for enterococcal resistance to cephalosporins. We found that enhanced production of the penicillin-binding protein Pbp4(5) upon exposure to cell wall stress was mediated by CroS/R and was critical for intrinsic cephalosporin resistance of E. faecalis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426447PMC
http://dx.doi.org/10.1128/mbio.01119-22DOI Listing

Publication Analysis

Top Keywords

cephalosporin resistance
20
resistance
9
enterococcus faecalis
8
infections treatment
8
enterococcal infections
8
resistance enterococci
8
cephalosporin antibiotics
8
tcs required
8
cell wall
8
wall stress
8

Similar Publications

Objectives: This study aimed to identify the aetiological spectrum, seasonal distribution and antimicrobial resistance patterns of diarrhoeal diseases in Bhutan.

Study Design And Setting: The study used a cross-sectional, retrospective analysis of secondary data gathered through a passive, hospital-based sentinel surveillance for diarrhoeal disease across 12 hospitals, representing Bhutan's demographically diverse regions.

Participants: A total of 3429 participants' data of all age groups who presented with diarrhoea at sentinel hospitals between 1 January 1 2016 and 31 December 2022 were analysed.

View Article and Find Full Text PDF

Prevalence of difficult-to-treat resistance in ESKAPE pathogens in a third level hospital in Mexico.

Infect Prev Pract

March 2025

Department of Infectious Diseases, Hospital Universitario "Dr. José E. González" y Facultad de Medicina, Universidad Autónoma de Nuevo León, Mitras Centro, Monterrey, Nuevo León, CP 64460, México.

Background: Antimicrobial resistance and difficult-to-treat resistance (DTR) in ESKAPE pathogens ( and species) is a threat to human health. The aim of this study was to determine the prevalence of antimicrobial resistance and DTR rates in ESKAPE pathogens over six years in a third-level hospital from Monterrey, Mexico.

Methods: Antimicrobial susceptibility testing was determined by either disk diffusion or broth microdilution in strains from 2018 to 2023.

View Article and Find Full Text PDF

Cefepime-tazobactam (FEP-TAZ) consists of cefepime combined with tazobactam, a penicillanic acid-sulfone recognized as an established beta-lactamase inhibitor. This study aims to investigate the in-vitro effectiveness of FEP-TAZ against cefepime-resistant clinical isolates of Escherichia coli (E. coli).

View Article and Find Full Text PDF

is a significant public health concern due to the emergence of antibiotic-resistant strains. Cefiderocol (FDC), a novel siderophore cephalosporin, has shown promise as a last-line treatment for multidrug-resistant Gram-negative bacteria. However, the emergence of -acquired FDC-resistant strains highlights the need for advanced tools to identify resistance-associated genomic mutations and address the challenges of FDC susceptibility testing.

View Article and Find Full Text PDF

Neisseria gonorrhoeae exhibits alarming antibiotic resistance trends and poses a significant challenge in therapeutic management. This study aimed to explore the association of penA alleles with penicillin-binding protein (PBP) occupancy patterns and reduced outer membrane permeability, impacting susceptibility to last-line cephalosporins and potential β-lactam candidates. The whole genome sequence, the MICs and PBP IC50s were determined for 12 β-lactams and β-lactamase inhibitors in 8 clinical isolates with varying β-lactam sensitivity, 2 ATCC, and 3 WHO cephalosporin-resistant reference strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!