The discovery that biomechanical forces regulate microbial virulence was established with the finding that physiological low fluid shear (LFS) forces altered gene expression, stress responses, and virulence of the enteric pathogen Salmonella enterica serovar Typhimurium during the log phase. These log phase LFS-induced phenotypes were independent of the master stress response regulator, RpoS (σ). Given the central importance of RpoS in regulating stationary-phase stress responses of S. Typhimurium cultured under conventional shake flask and static conditions, we examined its role in stationary-phase cultures grown under physiological LFS. We constructed an isogenic mutant derivative of wild-type S. Typhimurium and compared the ability of these strains to survive pathogenesis-related stresses that mimic those encountered in the infected host and environment. We also compared the ability of these strains to colonize (adhere, invade, and survive within) human intestinal epithelial cell cultures. Unexpectedly, LFS-induced resistance of stationary-phase S. Typhimurium cultures to acid and bile salts stresses did not rely on RpoS. Likewise, RpoS was dispensable for stationary-phase LFS cultures to adhere to and survive within intestinal epithelial cells. In contrast, the resistance of these cultures to challenges of oxidative and thermal stresses, and their invasion into intestinal epithelial cells was influenced by RpoS. These findings expand our mechanistic understanding of how physiological fluid shear forces modulate stationary-phase S. Typhimurium physiology in unexpected ways and provide clues into microbial mechanobiology and nuances of Salmonella responses to microenvironmental niches in the infected host. Bacterial pathogens respond dynamically to a variety of stresses in the infected host, including physical forces of fluid flow (fluid shear) across their surfaces. While pathogens experience wide fluctuations in fluid shear during infection, little is known about how these forces regulate microbial pathogenesis. This is especially important for stationary-phase bacterial growth, which is a critical period to understand microbial resistance, survival, and infection potential, and is regulated in many bacteria by the general stationary-phase stress response protein RpoS. Here, we showed that, unlike conventional culture conditions, several stationary-phase Salmonella pathogenic stress responses were not impacted by RpoS when bacteria were cultured under fluid shear conditions relevant to those encountered in the intestine of the infected host. These findings offer new insight into how physiological fluid shear forces encountered by Salmonella during infection might impact pathogenic responses in unexpected ways that are relevant to their disease-causing ability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9429890PMC
http://dx.doi.org/10.1128/msphere.00210-22DOI Listing

Publication Analysis

Top Keywords

fluid shear
28
stress responses
16
infected host
16
intestinal epithelial
12
rpos regulating
8
physiological low
8
fluid
8
low fluid
8
forces regulate
8
regulate microbial
8

Similar Publications

As the number of cerebral aneurysms treated with flow diverters continues to increase, it is important to understand what factors influence not only thrombus formation within the aneurysm cavity but also fibrin accumulation across the device and its associated disruption and blockage of the inflow stream. Both processes contribute to the eventual occlusion of the aneurysm or its continued patency and incomplete occlusion which may require future re-treatment. To investigate fibrin accumulation on flow diverters placed across the neck of cerebral aneurysms, a previously developed computational model that couples flow and fibrin dynamics is used in combination with experimental in vitro models of cerebral aneurysms treated with flow diverters.

View Article and Find Full Text PDF

The fly ash generated by coal combustion is one of the main sources of PM2.5, so the particulate matter removal technology of coal-fired boilers is receiving increasing attention. Turbulent agglomeration has emerged as a powerful tool for improving the efficiency of removing fine particulates from environments, sparking interest in its study.

View Article and Find Full Text PDF

A multiphysics hybrid continuum - agent-based model of in vitro vascularized organoids.

Comput Biol Med

December 2024

Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain. Electronic address:

Background: Organoids are 3D in vitro models that fulfill a hierarchical function, representing a small version of living tissues and, therefore, a good approximation of cellular mechanisms. However, one of the main disadvantages of these models is the appearance of a necrotic core due to poor vascularization. The aim of this work is the development of a numerical framework that incorporates the mechanical stimulation as a key factor in organoid vascularization.

View Article and Find Full Text PDF

Polycomb Repressive Complex 2 promotes atherosclerotic plaque vulnerability.

bioRxiv

December 2024

Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA.

Atherosclerotic cardiovascular disease (ASCVD), the leading cause of mortality worldwide, is driven by endothelial cell inflammatory activation and counter-balanced by anti-inflammatory transcription factors Klf2 and Klf4 (Klf2/4). Understanding vascular endothelial inflammation to develop effective treatments is thus essential. Here, we identify, Polycomb Repressive Complex (PRC) 2, which blocks gene transcription by trimethylating histone3 Lysine27 in gene promoter/enhancers, as a potent, therapeutically targetable determinant of vascular inflammation and ASCVD progression.

View Article and Find Full Text PDF

Multimodal monitoring of cerebral perfusion in carotid endarterectomy patients: a computational fluid dynamics study.

Front Neurol

December 2024

Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Objective: To evaluate postoperative cerebral perfusion changes and their influencing factors in carotid endarterectomy (CEA) patients by integrating multimodal monitoring methods, including cerebral regional oxygen saturation (rSO), carotid ultrasound (CU), computed tomographic angiography (CTA), and computed tomographic perfusion imaging (CTP), with computational fluid dynamics (CFD) assessment.

Methods: We conducted a cohort study on patients with internal carotid artery (ICA) stenosis undergoing CEA at our institution. Pre- and postoperative assessments included CU, CTA, CTP, and rSO monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!